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Preface

Recently, the applications of wave processes modelling have created tremendous
interest among researchers and practitioners in many areas of science and tech-
nology for intelligent decision-making. Examples of computer simulation using
intelligent grid-characteristic method and decision-making in geophysics, seismic
prospecting, global seismic, medicine, aircraft and railway industry are included in
this book. Grid-characteristic method is a numerical method for solving hyperbolic
systems of equations (for example, the elastic and acoustic wave equations). This
method allows to calculate the wave processes in heterogeneous media accurately
and physically correctly. Grid-characteristic method permits to use the correct
boundary and interface conditions in integral regions. Problems of seismic
prospecting, earthquake stability, global seismic on Earth and Mars, medicine,
railway ultrasonic non-destructive testing, aircraft composites modelling, and other
applications had been reported using the developed grid-characteristic method in
the last 10 years.

We are grateful to the researchers for inventing numerical methods, parallel
algorithms, physical correct problems statements and performing computer simu-
lation for research and development reported in this book. Our thanks are due to
Springer-Verlag for the opportunity to publish our book.

The book is directed to the students, researchers, practitioners and professors
interested in numerical mathematics, computer science, computer simulation,
high-performance computer systems, unstructured meshes, interpolation, seismic
prospecting, geophysics, medicine, non-destructive testing and composite materials.

Moscow, Russia Alena V. Favorskaya
January 2018 Igor B. Petrov
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Chapter 1
Theory and Practice of Wave Processes
Modelling

Alena V. Favorskaya and Igor B. Petrov

Abstract This chapter presents a brief description of chapters devoted to the innova-
tions in wave processes modelling and decision making (grid-characteristic method
and applications). Grid-characteristic method is a direct finite-difference numeri-
cal method for obtaining full-wave solution of hyperbolic systems of equations.
One can use different types of grids such as the regular, triangular, tetrahedral,
and nested grids. This method is often used for modelling of the acoustic and
isotropic/anisotropic elastic waves in heterogeneousmedia. Also, the original analyt-
ical algorithms for interpolation on the unstructured triangular and tetrahedralmeshes
are developed. The study of wave processes might be used in different applied areas,
e.g. geophysics, non-destructive testing of different objects and materials, ultrasonic
testing, seismic stability investigation, and ultrasonic operations modelling. Origi-
nal investigation of composite materials delamination and non-destructive testing is
done. The geological faults zones study is performed. Also, the migration techniques
of acoustic and elastic fields are developed.
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2 A. V. Favorskaya and I. B. Petrov

1.1 Introduction

As high-performance computer systems are developed, the physical laboratory
experiments are replaced by numerical modelling. A feature of numerical simulation
is not only its cheapness but also the possibility of a more detailed study of physical
processes and phenomena. However, the results of computer modelling always
contain some inconsistencies. Therefore, in order to make it possible to conduct
the numerical experiments, it is necessary to develop the high-precision numerical
methods that will allow to model the physical processes under consideration.
Investigation of wave processes in complex heterogeneous media is applicable for
solving a large number of applied problems in such areas as medicine, construction
industry, oil and gas industry, aircraft industry, among others.

1.2 Chapters Included in the Book

The main purpose of this book is to describe the crucial issues of the proposed
innovative approach for applied study of wave processes.

Chapters 2–4 are closely related to each other. They disclose the process of inter-
polation on unstructured triangular (Chap. 2) and tetrahedral (Chaps. 3 and 4) grids.
Chapters can be valuable to all researcherswho use these types ofmeshes. Since these
Chapters include analytical algorithms, the software implementation of these analyt-
ical formulae and algorithms allows to reduce the amount of computing operations
spent on the application of these types of grids significantly. The process of interpo-
lation on unstructured grids has a significant number of applications. It can be used
independently in the process of rebuilding grids. For example, the process of restruc-
turing unstructured mesh into an unstructured one and the process of restructuring
the unstructured grid into a structured one are solved by applying the interpolation
discussed in Chaps. 2–4. The interpolation can also be used as an algorithmic stage
in the numerical method using transformable or adaptive unstructured grids. In addi-
tion, the interpolation is closely related to the family of grid-characteristic methods
discussed in the Book. Because the adaptation of the grid-characteristic method to
unstructured grids is reduced to the interpolation problem [1–3]. Chapters 2 and 3
give ready to use analytical expressions for polynomial interpolation from 1 to 5
orders inclusive. Also, the algorithms for piecewise linear interpolation into arbitrary
shaped triangular and tetrahedron are considered in Chaps. 2 and 4, respectively. In
addition, Chaps. 2 and 3 describe methods of hybrid interpolation and interpolation
with different limiters. Also nested unstructured triangular and tetrahedralmeshes are
discussed in Chaps. 2 and 3, respectively. There are a lot of ready to use analytical for-
mulae in Chaps. 2–4. These analytical formulae can significantly reduce the amount
of high-performance computer system power and time needed for simulations.

Chapter 5 outlines the crucial points of a family of grid-characteristic methods
[4–13]. This family of direct finite-difference method is well suited for full-wave
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simulation of acoustic and isotropic/anisotropic elastic wave propagation in complex
heterogeneous environments with apparent selection of boundaries and interfaces
[14]. It is possible to use different types of grids: structured, hexahedral, unstructured,
nested, and mixed. It is also possible to combine the grid-characteristic method and,
for example, a Smoothed Particles Hydrodynamics (SPH) method during the same
calculation [15]. These features of a family of grid-characteristic methods allow
to solve a large class of applied problems. Systems of equations describing wave
processed in anisotropic elastic, isotropic elastic, and acoustic media are considered.
Also, the mathematical statements and implementation of various boundary and
interface conditions for 2D and 3D cases are presented in Chap. 5. The condition of
complete continuity of velocity and traction, free sliding, non-reflecting boundary
conditions, boundary conditions with a given traction, with a given velocity of the
interface, mixed boundary conditions, interface conditions between the elastic and
acoustic media are discussed in this chapter.

Chapter 6 presents the results of numericalmodeling of delamination of composite
materials [16] with a complex heterogeneous structure, as well as some approaches
to the development of methods for non-destructive testing of their state. The wave
processes of a complex nature are also played a key role in both studies. Difficul-
ties arise even at the stage of creating a mathematical model for the delamination
of composite material. Nowadays, none of these delamination mathematical mod-
els is consistent with the laboratory experiments. Composite materials are being
actively developed and used in a wide range of applied fields. The complex struc-
ture of composite materials ensures their high strength at low weight. This feature
allows to consider them well applicable in the aircraft industry. However, to do this,
it is necessary to develop fast and effective methods for non-destructive testing of
composite materials for the presence of destructions in them. The testing methods
suitable for homogeneous media are not suitable for composite materials in princi-
ple. Because the methods of nondestructive testing are closely related to the wave
processes occurring within the material under investigation. The wave processes in
a composite material are arranged essentially differently in comparison with homo-
geneous materials. Therefore, the development of methods for testing composite
materials is closely related to the study of wave processes. To study the wave pro-
cesses today, a full-wave simulation is the best suited approach discussed in Chap. 6.

Chapter 7 demonstrates that the grid-characteristic method is applicable for direct
modelling of the seismic prospecting process on typical seismogeological models,
such as Marmousi and SEG/EAGE Salt Model. The actual problems of the oil indus-
try, as well as the problems of detection and investigation of geological faults, are
considered. In Chap. 7, the application of full wave modelling of seismic waves
arising in the process of seismic exploration of these fractured zones is discussed.
The possibility to predict effects on seismograms by analyzing spatial wave patterns
for a specially developed series of numerical experiments is demonstrated. Since
other techniques of observing spatial dynamic wave processes arising in geological
environments are not possible, these spatial wave fields can be obtained only by
full-wave numerical simulation. However, the specificity of the problem imposes the
special demands on both the numerical methods used and development of a series of

https://doi.org/10.1007/978-3-319-76201-2_5
https://doi.org/10.1007/978-3-319-76201-2_6
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problem statements for numerical experiments. Features of this innovative approach
are set out in Chap. 7. It was also shown in this Chapter that typical analytical tests
cannot guarantee that software gives an opportunity for the geologist to develop right
conclusions. This problem can be solved only by understanding the physical basis
of the phenomena under consideration and the peculiarities of the operation of the
difference methods used in the software, simultaneously. This suggests the method
called Wave Logica, fragments of which are also given in the Chap. 7.

Chapter 8 discusses the methods of seismic migration [17]. Seismic migration
is actively used in seismic surveys to detect contrast interfaces between different
geological rocks based on field seismograms. In Chap. 8, the difference between
the acoustic wave and elastic wave approaches is demonstrated using the example of
adjoint operator [17, 18] andBorn approximation [19–24]. Thedetailed descriptionof
the relevant analytical expressions is given in this Chapter. The types of interfaces that
are equally displayed by the migration of acoustic fields and the migration of elastic
fields are considered in detail. Also, types of interfaces have been identified, which
reveal better amigration of elastic fields. The application ofmigration of elastic fields
for seismograms obtained during the use of equipment for single-component seismic
exploration of the Earth’s interior is considered. Even for this case, the advantage of
the migration of elastic fields is shown in comparison with the migration of acoustic
fields.

Chapter 9 deals with seismic migration in a case of an elastic wave field. Formu-
lae for seismic migration are obtained on the basis of the corresponding integrals of
Rayleigh and Kirchhoff [17]. In Chap. 9, one can find a comparison of the results
obtained with the help of Rayleigh integrals and grid-characteristic method. The
meaning of such comparison is that the grid-characteristicmethod is finite-difference,
while the Rayleigh-based method is predominantly analytical. That means that all
calculations are related to the calculation of analytic expressions for integrals and
derivatives, respectively. Due to the fact that these methods are two qualitatively
different approaches, their comparison is of interest. Also, in this Chapter the mul-
tiple interfaces that are necessary for applying migration based on the Rayleigh and
Kirchhoff formulae for the elastic case are described in detail. The possibility of ana-
lytically predicting the position of these interfaces on the obtained migration images
is considered, what further can give a chance of their elimination using, for example,
image recognition methods [25–29].

1.3 Conclusions

The chapter has provided a briefly description of eight chapters with original inves-
tigations of wave processes. All included Chapters provide the latest achievements
in numerical methods and their applications.

A key feature of the numerical methods outlined in the Chapters is a focus on
solving applied problems of various fields, such as seismic, seismic prospecting,
investigation of composite materials, study of the human body, ultrasound and laser

https://doi.org/10.1007/978-3-319-76201-2_7
https://doi.org/10.1007/978-3-319-76201-2_7
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operations on the human body, etc. Also, the investigation of associated wave pro-
cesses allows to develop new engineering solutions with following testing. Thus, the
approaches for computer modelling proposed in this book are developed as a more
perfect, convenient, efficient and cheaper alternative to laboratory and field research
and testing. Also, a method of purposeful development of higher-quality engineering
solutions based on the analysis of wave processes is proposed in this book.
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Chapter 2
Interpolation on Unstructured
Triangular Grids

Alena V. Favorskaya

Abstract The chapter develops the analytical formulae for high-order interpolation
on the unstructured triangular grids, such as the polynomial interpolation, piecewise
linear interpolation, and hybrid interpolation. The interpolation might be used during
the creation of new unstructured triangular or regular gird instead of previous ones as
an element of numerical method for finding 2D solutions on the unstructured triangu-
lar grids and visualization of some 2D field, as well as during the images’ creation or
converting. Also the hierarchical nested unstructured triangular grids are discussed
in this chapter. This type of grids can be used as an element of numerical method on
the unstructured triangular grids for the visualization, creation, and transformation
of 2D images. The more the numerical mathematicians work, the faster the soft-
ware executes and the lesser hardware resources are needed for obtaining the same
solution. Analytical formulae reduce the recourses needed, for example the software
operation time and amount of dynamic computer memory. In this chapter, one can
find the analytical expressions ready for use. The deduced analytical expressions and
formed tables help to achieve the huge numerical modelling results in a case of the
hardware resources’ deficiency.
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2.1 Introduction

Interpolation on the unstructured triangular and tetrahedral grids [1] makes it pos-
sible to perform a full-wave modelling in order to minimize the risks of different
nature and allows to describe the complex geometric shapes. The interpolation plays
a fundamental role in studying the causes of seismogram pattern [2–4], destruction
in buildings under the intensive dynamic loads from the earthquakes or man-made
nature actions [5], causes of the integrity of the tissues of the human body [6–8] in the
conduct of ultrasonic operations, ultrasonic diagnostics, and injuries of the human
body parts including the influence of implants, and modelling of non-destructive
control [9] of various designs and materials including the composite materials [10],
and other examples of studying of dynamical wave processes, called Wave Logica.
Very often, 2D analysis is sufficient for the research of dynamic wave processes and
identification of the reasons for formation of the certain regularities. Thus, interpo-
lation on the triangular grids is not less relevant than interpolation on the tetrahedral
grids.

The problem for obtaining the solutions of systems of equations is in that the
computers donot dealwith the continuity, continuous values andfields; the computers
deal onlywith the discrete values. Thus, computers provide the solutions only in finite
points. However, one needs to know a solution in any point of space. This problem
is solved using interpolation. In this chapter, the interpolation on the unstructured
triangular meshes is discussed. There are two reasons for such discussion. The first
reason is due to the fact that a lot of problems contain only some 2D physical
effects and do not contain any 3D effect. Also the interpolation technique on the
unstructured triangular and tetrahedral grids can be used for the images’ construction
and transformation.The second reason todiscuss the interpolationon theunstructured
triangular grids is a complicity of the interpolation technique on the unstructured
tetrahedral meshes. Therefore, it is simpler to understand these techniques using
two-dimensional triangular gridswith the following investigation on the unstructured
tetrahedral grids.

The interpolation on the unstructured triangular and tetrahedral grids has several
applications. For example, the interpolation can be used for creation of a new
unstructured triangular, tetrahedral, or regular grid instead of previous one. The
interpolation is applied as an element of numerical method for finding 2D solutions
and 3D solutions on the unstructured triangular and tetrahedral meshes [1], for
example a grid-characteristic method [1–10]. Also, the interpolation is useful during
visualization of some space fields.

The problem of diminishing the value of mistake is secondary. The purpose of
development of the software should not be forgotten. The problem of increasing the
order of approximation and convergence is tertiary. The purpose of development of
the numerical method should not be forgotten. The primary problem is the problem
of obtaining the mathematically and physically correct and detailed solutions. The
high-order approximation schemes and methods are tested qualitatively and detailed
in a one-dimensional case on the structured uniform grids, with known solutions,
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and without vast amount of complex interface and boundary conditions. However,
these problems have not interest of practice because the analytical solutions of them
are well known. Also, the criteria of approximation, stability, and convergence are
not perfect. The real order of approximation and convergence could be much smaller
than the mathematically investigated one. And nobody knows could these high-order
schemes and methods provide the correct results and solutions of real problems and
how less the real order of approximation and convergence will be regarding the
theoretical order. The high-order schemes are usually tested only for inner points,
but the order of approximation and convergence or non-physical oscillations are
decreased on the boundaries and interfaces. Usually the practical problems contain
the numerous complex boundaries and interfaces and differ from the models by this
vast amount of boundaries and interfaces.

Remember that the problem of obtaining the mathematically and physically cor-
rect and detailed solutions is primary. There are two ways to solve this primary
problem. The first way is to increase the order of approximation and convergence.
The second way is the use of more detailed grids. The real alternative to increas-
ing of the order of approximation and convergence is to use more detailed meshes.
The advantages of this alternative solution are the guarantee of absence of the non-
physical oscillations not only for the model problems but also for practical ones.

In a case of the unstructured grids, it is hard to use the second way due to
two reasons. The first reason is a long time to create more detailed unstructured
grid. The second reason is a long time to find the nearest point for the point under
consideration. The material in Chaps. 2–4 eliminates both of these two reasons.

There is an initial polynomial interpolation function. In a case of high-order
interpolation, this function can have the erroneous oscillations. The hybridization
is used to eliminate these oscillations. There are two stages of hybridization. The
first stage is to select the situations, where the hybridization is needed. The second
stage is to apply the hybridization. Also there are two ways of hybridization. The
first way is to increase the order of interpolation and the second one is to use more
detailed unstructured grid and smaller order of interpolation. The both ways and their
mixing are discussed in Chaps. 2–4.

The problem of interpolation arises because the object and result of numerical
modelling of physical processes are continuous dynamic spatial physical quantities
although it is necessary to operate with their discrete counterparts during computing.
Thus, it is necessary to restore the value of function at any point of space-time from
its values in a given discrete coordinate range and in the discrete set of reference
points. This process is called interpolation. The importance of this issue is so great
that the regular researches and developments in this field are conducted. A series of
crucial recent researches are reviewed below.

Interpolation of rational matrix functions was discussed by Ball et al. [11]. Lama
and Kwon proposed new interpolation method based on the combination of discrete
cosine transform and wavelet transform [12]. A review of spatial interpolation meth-
ods applied in the environmental sciences was done in [13]. Three dimensional image
reconstruction using interpolation of distance and image registration was discussed
in [14]. Image interpolation based on sparse representation with nonlocal autoregres-

https://doi.org/10.1007/978-3-319-76201-2_2
https://doi.org/10.1007/978-3-319-76201-2_4
https://doi.org/10.1007/978-3-319-76201-2_2
https://doi.org/10.1007/978-3-319-76201-2_4
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sive modelling was presented in [15]. Multi patch B-spline interpolation was applied
for Kirchhoff–Love space rod in [16].

Efficient algorithm for numerical approximation of metrics used for the
anisotropic mesh adaptation on the triangular meshes with finite element compu-
tations was suggested in [17]. Wen et al. [18] suggested fast Fourier transformation
based on the triangular self-convolution window interpolation as an efficient algo-
rithm for power system harmonic estimation, which can eliminate the errors caused
by spectral leakage and picket fence effect. Triangular Shepard interpolation was
discussed in [19]. Hydrostatic atmospheric dynamical core based on the triangular
C-grids using relatively small discretization stencils for interpolation was proposed
in [20].

Note that interpolation on the unstructured grids meets the special difficulties. A
significant version of the unstructured grids is the triangular grids. The triangular
grids are regularly used due to Delaunay triangulation algorithm [21], which is very
comfortable for programming and using in the hardware implementation. The tri-
angular and tetrahedral grids are often used in solving of some applied problems,
especially medical ones [6–8] and seismic prospecting and exploration of hydro-
carbons, oils, and gas [2–4]. Unfortunately, the computational mathematicians and
programmers have to abandon the use of the unstructured triangular and tetrahedral
grids because such type of interpolation is mathematically complex. At the same
time, the mathematically simplified versions do not allow to achieve the accuracy of
calculations sufficient for carrying out the research saving the requirements of high
computer costs. The analytical expressions and tables represented in this chapter suc-
cessfully solve this problem. Also, a software library was developed on this basis.
The designed library implements the presented algorithms and is actively used for
the practical solution of the above-mentioned applied problems [1–10].

More the numerical mathematician work, faster the software will execute and
lesser of hardware resources will be needed for obtaining the same solution. Analyti-
cal formulae reduce the recourses needed, i.e. the software operation time and amount
of dynamic computer memory. Thus, in this chapter one can find a vast amount of
equations and tables specially developed to create the analytical algorithms.

Note that in this chapter only the case of scalar field u
(

⇀

r
)
is considered but one

can use the same expressions for vector field
⇀

u
(

⇀

r
)
if these expressions are applied

to the components of vector field u1
(

⇀

r
)
, u2

(
⇀

r
)
, u3

(
⇀

r
)
, u4

(
⇀

r
)
, … one by one.

Also note that all formulae in this chapter are true for triangles of arbitrary shape
despite on the rectangular triangles are drew in all figures of this chapter. The similar
formulae for tetrahedrons of arbitrary shapes are discussed in Chaps. 3 and 4.

The chapter’s structure is as follows. In Sect. 2.2, the analytical expressions for
polynomial interpolation on the unstructured triangular grids for orders from 1 to 5
inclusive are discussed. In Sect. 2.3, the analytical formulae for piecewise interpo-
lation on the unstructured triangular grids divided into small triangles are presented.
Using this type of interpolation one can obtain the continuous piecewise linear inter-
polation and construct different types of hybrid interpolation on the unstructured

https://doi.org/10.1007/978-3-319-76201-2_3
https://doi.org/10.1007/978-3-319-76201-2_4
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Fig. 2.1 Reference points in
a triangle for polynomial
interpolation with order 1

triangular grids or use the hierarchical nested unstructured triangular grids discussed
in Sect. 2.4. Section 2.5 with the conclusions finalizes the chapter.

2.2 Polynomial Interpolation

In this section, the analytical formulae for polynomial interpolation on the unstruc-
tured triangular grids are considered. Using this type of interpolation, one can obtain
the continuous piecewise polynomial field and continuous differentiable in each
triangle [1]. The proposed method for obtaining these analytical formulae for any
given polynomial degree is discussed in Sect. 2.2.1, while the lists with the analyt-
ical formulae for degrees N from 1 to 5 inclusive are given in Sects. 2.2.2–2.2.6,
respectively.

2.2.1 Obtaining the Analytical Formulae

In order to determine a polynomial field with degree N , which depends on x and y,
the values at several points called reference points should be known. The amount of
these reference points is equal to (N+1)(N+2)

2 .
The following method of arranging the reference points is suggested. The lines

parallel to the sides of a triangle ABC, which divide each of its sides into N equal
parts, are drawn within a triangle. The reference points are numbered in the way
shown in Figs. 2.1, 2.2, 2.3, 2.4 and 2.5. These lines divide a triangle into similar
smaller triangles.

The interpolation polynomials for finding some scalar field u
(

⇀

r
)
in the triangle

can be written as Eq. 2.1.

Fig. 2.2 Reference points in
a triangle for polynomial
interpolation with order 2
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Fig. 2.3 Reference points in
a triangle for polynomial
interpolation with order 3

Fig. 2.4 Reference points in
a triangle for polynomial
interpolation with order 4

Fig. 2.5 Reference points in
a triangle for polynomial
interpolation with order 5

u
(

⇀

r
)

�
∑
i, j

ui j x
i y j (2.1)

Assume that values of the field in the reference points are known and defined by
Eq. 2.2.
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uabc � u
(

⇀

r abc
)

�
∑
i, j

ui j x
i
abc y

j
abc (2.2)

One can write the solution of the system of linear Eq. 2.2 as follows:

ui j �
∑
a,b,c

ai jabcuabc. (2.3)

Thus, one can determine theweights of the reference pointswabc

(
⇀

r
)
using Eq. 2.4

wabc

(
⇀

r
)

�
∑
i, j

ai jabcx
i y j (2.4)

and rewrite Eq. 2.1 in more applicable form:

u
(

⇀

r
)

�
∑
a,b,c

wabc

(
⇀

r
)
uabc. (2.5)

The field in the point R with radius-vector
⇀

r into the triangle ABC should be
found. Also 3 triangles BCR, CAR, and ABR are considered. One can find areas of
these triangles using Eqs. 2.6–2.9.

SA
(

⇀

r
)

� SBCR � 1

2

[
⇀

rC − ⇀

r B,
⇀

r − ⇀

r B

]
(2.6)

SB
(

⇀

r
)

� SCAR � 1

2

[
⇀

r A − ⇀

rC ,
⇀

r − ⇀

rC
]

(2.7)

SC
(

⇀

r
)

� SABR � 1

2

[
⇀

r B − ⇀

r A,
⇀

r − ⇀

r A

]
(2.8)

S � SABC � 1

2

[
⇀

r B − ⇀

r A,
⇀

rC − ⇀

r A

]
(2.9)

Also one can find the relative areas using Eq. 2.10, where T � A, B, C .

sT
(

⇀

r
)

�
ST

(
⇀

r
)

S
(2.10)

The relative areas have several properties. Their sum is equal to 1 (Eq. 2.11).

sA
(

⇀

r
)
+ sB

(
⇀

r
)
+ sC

(
⇀

r
)

� 1 (2.11)

If a point R is one of the reference points with indices abc, then for any b and any
c Eq. 2.12 is true:

sA
(

⇀

r abc
)

� a

N
, (2.12)
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for any a and any c Eq. 2.13 is true:

sB
(

⇀

r abc
)

� b

N
, (2.13)

and for any a and any b Eq. 2.14 is true:

sC
(

⇀

r abc
)

� c

N
. (2.14)

The weights wabc

(
⇀

r
)
of the reference points are written in a view of Eq. 2.15.

wabc

(
⇀

r
)

�
∏N

i�1

(
sTi

(
⇀

r
)

− ni
N

)

∏N
i�1

(
sTi

(
⇀

r abc
)

− ni
N

) (2.15)

In Eq. 2.15, the letter-indices Ti � A, B, C and natural numbers ni should be
founded from Eq. 2.16.

wabc

(
⇀

r a′b′ c′
)

� δaa′ δbb′ δcc′ (2.16)

2.2.2 Weights of Reference Points for N = 1

Consider some example of finding the letter-indices and natural numbers in Eq. 2.15
for the case N � 1. In this case, 3 reference points 100, 010, and 001 exist. These
points are represented in Fig. 2.1.

Firstly, the weight w100

(
⇀

r
)
should be found using Eq. 2.17.

w100

(
⇀

r
)

�
sT1

(
⇀

r
)

− n1

sT1
(

⇀

r 100
)

− n1
(2.17)

Suppose that
⇀

r � ⇀

r 001. Then Eq. 2.18 is obtained.

0 �
sT1

(
⇀

r 001
)

− n1

sT1
(

⇀

r 100
)

− n1
�

sA
(

⇀

r 001
)

− n1

sA
(

⇀

r 100
)

− n1
� 0 − n1

1 − n1
� 0 − 0

1 − 0
� sA

(
⇀

r 001
)

(2.18)

Thus, the weight in reference point 100 is found using Eq. 2.19.

w100

(
⇀

r
)

� sA
(

⇀

r
)

(2.19)
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Similarly, one can find the weights w010

(
⇀

r
)

and w001

(
⇀

r
)

provided by

Eqs. 2.20–2.21.

w010

(
⇀

r
)

� sB
(

⇀

r
)

(2.20)

w001

(
⇀

r
)

� sC
(

⇀

r
)

(2.21)

Therefore, the formula for linear interpolation in a triangle can be written in the
form of Eq. 2.22.

u
(

⇀

r
)

� sA
(

⇀

r
)
u100 + sB

(
⇀

r
)
u010 + sC

(
⇀

r
)
u001 (2.22)

2.2.3 Weights of Reference Points for N = 2

In the case of N � 2, the weights of reference points represented in Fig. 2.2 are
defined using Eqs. 2.23–2.28, respectively.

w200

(
⇀

r
)

� sA
(

⇀

r
) (

2sA
(

⇀

r
)

− 1
)

(2.23)

w020

(
⇀

r
)

� sB
(

⇀

r
) (

2sB
(

⇀

r
)

− 1
)

(2.24)

w002

(
⇀

r
)

� sC
(

⇀

r
) (

2sC
(

⇀

r
)

− 1
)

(2.25)

w110

(
⇀

r
)

� 4sA
(

⇀

r
)
sB

(
⇀

r
)

(2.26)

w011

(
⇀

r
)

� 4sB
(

⇀

r
)
sC

(
⇀

r
)

(2.27)

w101

(
⇀

r
)

� 4sC
(

⇀

r
)
sA

(
⇀

r
)

(2.28)

2.2.4 Weights of Reference Points for N = 3

In the case of N � 3, the weights of reference points represented in Fig. 2.3 are
computed using Eqs. 2.29–2.38, respectively.

w300

(
⇀

r
)

� 1

2
sA

(
⇀

r
) (

3sA
(

⇀

r
)

− 1
) (

3sA
(

⇀

r
)

− 2
)

(2.29)

w030

(
⇀

r
)

� 1

2
sB

(
⇀

r
) (

3sB
(

⇀

r
)

− 1
) (

3sB
(

⇀

r
)

− 2
)

(2.30)

w003

(
⇀

r
)

� 1

2
sC

(
⇀

r
) (

3sC
(

⇀

r
)

− 1
) (

3sC
(

⇀

r
)

− 2
)

(2.31)
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w210

(
⇀

r
)

� 9

2
sA

(
⇀

r
)
sB

(
⇀

r
) (

3sA
(

⇀

r
)

− 1
)

(2.32)

w021

(
⇀

r
)

� 9

2
sB

(
⇀

r
)
sC

(
⇀

r
) (

3sB
(

⇀

r
)

− 1
)

(2.33)

w102

(
⇀

r
)

� 9

2
sC

(
⇀

r
)
sA

(
⇀

r
) (

3sC
(

⇀

r
)

− 1
)

(2.34)

w120

(
⇀

r
)

� 9

2
sB

(
⇀

r
)
sA

(
⇀

r
) (

3sB
(

⇀

r
)

− 1
)

(2.35)

w012

(
⇀

r
)

� 9

2
sC

(
⇀

r
)
sB

(
⇀

r
) (

3sC
(

⇀

r
)

− 1
)

(2.36)

w201

(
⇀

r
)

� 9

2
sA

(
⇀

r
)
sC

(
⇀

r
) (

3sA
(

⇀

r
)

− 1
)

(2.37)

w111

(
⇀

r
)

� 27sA
(

⇀

r
)
sB

(
⇀

r
)
sC

(
⇀

r
)

(2.38)

2.2.5 Weights of Reference Points for N = 4

In the case of N � 4, the weights of reference points represented in Fig. 2.4 are
determined by Eqs. 2.39–2.53, respectively.

w400

(
⇀

r
)

� 1

3
sA

(
⇀

r
) (

4sA
(

⇀

r
)

− 1
) (

2sA
(

⇀

r
)

− 1
) (

4sA
(

⇀

r
)

− 3
)

(2.39)

w040

(
⇀

r
)

� 1

3
sB

(
⇀

r
) (

4sB
(

⇀

r
)

− 1
) (

2sB
(

⇀

r
)

− 1
) (

4sB
(

⇀

r
)

− 3
)

(2.40)

w400

(
⇀

r
)

� 1

3
sC

(
⇀

r
) (

4sC
(

⇀

r
)

− 1
) (

2sC
(

⇀

r
)

− 1
) (

4sC
(

⇀

r
)

− 3
)

(2.41)

w310

(
⇀

r
)

� 16

3
sA

(
⇀

r
)
sB

(
⇀

r
) (

4sA
(

⇀

r
)

− 1
) (

2sA
(

⇀

r
)

− 1
)

(2.42)

w031

(
⇀

r
)

� 16

3
sB

(
⇀

r
)
sC

(
⇀

r
) (

4sB
(

⇀

r
)

− 1
) (

2sB
(

⇀

r
)

− 1
)

(2.43)

w103

(
⇀

r
)

� 16

3
sC

(
⇀

r
)
sA

(
⇀

r
) (

4sC
(

⇀

r
)

− 1
) (

2sC
(

⇀

r
)

− 1
)

(2.44)

w130

(
⇀

r
)

� 16

3
sB

(
⇀

r
)
sA

(
⇀

r
) (

4sB
(

⇀

r
)

− 1
) (

2sB
(

⇀

r
)

− 1
)

(2.45)

w013

(
⇀

r
)

� 16

3
sC

(
⇀

r
)
sB

(
⇀

r
) (

4sC
(

⇀

r
)

− 1
) (

2sC
(

⇀

r
)

− 1
)

(2.46)

w301

(
⇀

r
)

� 16

3
sA

(
⇀

r
)
sC

(
⇀

r
) (

4sA
(

⇀

r
)

− 1
) (

2sA
(

⇀

r
)

− 1
)

(2.47)

w220

(
⇀

r
)

� 4sA
(

⇀

r
)
sB

(
⇀

r
) (

4sA
(

⇀

r
)

− 1
) (

4sB
(

⇀

r
)

− 1
)

(2.48)

w022

(
⇀

r
)

� 4sB
(

⇀

r
)
sC

(
⇀

r
) (

4sB
(

⇀

r
)

− 1
) (

4sC
(

⇀

r
)

− 1
)

(2.49)
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w202

(
⇀

r
)

� 4sC
(

⇀

r
)
sA

(
⇀

r
) (

4sC
(

⇀

r
)

− 1
) (

4sA
(

⇀

r
)

− 1
)

(2.50)

w211

(
⇀

r
)

� 32sA
(

⇀

r
)
sB

(
⇀

r
)
sC

(
⇀

r
) (

4sA
(

⇀

r
)

− 1
)

(2.51)

w121

(
⇀

r
)

� 32sB
(

⇀

r
)
sC

(
⇀

r
)
sA

(
⇀

r
) (

4sB
(

⇀

r
)

− 1
)

(2.52)

w112

(
⇀

r
)

� 32sC
(

⇀

r
)
sA

(
⇀

r
)
sB

(
⇀

r
) (

4sC
(

⇀

r
)

− 1
)

(2.53)

2.2.6 Weights of Reference Points for N = 5

In the case of N � 5, the weights of reference points represented in Fig. 2.5 are
identified by Eqs. 2.54–2.74, respectively.

w500

(
⇀
r
)

� 1

24
sA

(
⇀
r
) (

5sA
(

⇀
r
)

− 1
) (

5sA
(

⇀
r
)

− 2
) (

5sA
(

⇀
r
)

− 3
) (

5sA
(

⇀
r
)

− 4
)

(2.54)

w050

(
⇀
r
)

� 1

24
sB

(
⇀
r
) (

5sB
(

⇀
r
)

− 1
) (

5sB
(

⇀
r
)

− 2
) (

5sB
(

⇀
r
)

− 3
) (

5sB
(

⇀
r
)

− 4
)

(2.55)

w005

(
⇀
r
)

� 1

24
sC

(
⇀
r
) (

5sC
(

⇀
r
)

− 1
) (

5sC
(

⇀
r
)

− 2
) (

5sC
(

⇀
r
)

− 3
) (

5sC
(

⇀
r
)

− 4
)

(2.56)

w410

(
⇀
r
)

� 25

24
sA

(
⇀
r
)
sB

(
⇀
r
) (

5sA
(

⇀
r
)

− 1
) (

5sA
(

⇀
r
)

− 2
) (

5sA
(

⇀
r
)

− 3
)

(2.57)

w041

(
⇀
r
)

� 25

24
sB

(
⇀
r
)
sC

(
⇀
r
) (

5sB
(

⇀
r
)

− 1
) (

5sB
(

⇀
r
)

− 2
) (

5sB
(

⇀
r
)

− 3
)

(2.58)

w104

(
⇀
r
)

� 25

24
sC

(
⇀
r
)
sA

(
⇀
r
) (

5sC
(

⇀
r
)

− 1
) (

5sC
(

⇀
r
)

− 2
) (

5sC
(

⇀
r
)

− 3
)

(2.59)

w140

(
⇀
r
)

� 25

24
sB

(
⇀
r
)
sA

(
⇀
r
) (

5sB
(

⇀
r
)

− 1
) (

5sB
(

⇀
r
)

− 2
) (

5sB
(

⇀
r
)

− 3
)

(2.60)

w014

(
⇀
r
)

� 25

24
sC

(
⇀
r
)
sB

(
⇀
r
) (

5sC
(

⇀
r
)

− 1
) (

5sC
(

⇀
r
)

− 2
) (

5sC
(

⇀
r
)

− 3
)

(2.61)

w401

(
⇀
r
)

� 25

24
sA

(
⇀
r
)
sC

(
⇀
r
) (

5sA
(

⇀
r
)

− 1
) (

5sA
(

⇀
r
)

− 2
) (

5sA
(

⇀
r
)

− 3
)

(2.62)

w320

(
⇀
r
)

� 25

12
sA

(
⇀
r
)
sB

(
⇀
r
) (

5sA
(

⇀
r
)

− 1
) (

5sB
(

⇀
r
)

− 1
) (

5sA
(

⇀
r
)

− 2
)

(2.63)

w032

(
⇀
r
)

� 25

12
sB

(
⇀
r
)
sC

(
⇀
r
) (

5sB
(

⇀
r
)

− 1
) (

5sC
(

⇀
r
)

− 1
) (

5sB
(

⇀
r
)

− 2
)

(2.64)

w203

(
⇀
r
)

� 25

12
sC

(
⇀
r
)
sA

(
⇀
r
) (

5sC
(

⇀
r
)

− 1
) (

5sA
(

⇀
r
)

− 1
) (

5sC
(

⇀
r
)

− 2
)

(2.65)

w230

(
⇀
r
)

� 25

12
sB

(
⇀
r
)
sA

(
⇀
r
) (

5sB
(

⇀
r
)

− 1
) (

5sA
(

⇀
r
)

− 1
) (

5sB
(

⇀
r
)

− 2
)

(2.66)

w023

(
⇀
r
)

� 25

12
sC

(
⇀
r
)
sB

(
⇀
r
) (

5sC
(

⇀
r
)

− 1
) (

5sB
(

⇀
r
)

− 1
) (

5sC
(

⇀
r
)

− 2
)

(2.67)

w302

(
⇀
r
)

� 25

12
sA

(
⇀
r
)
sC

(
⇀
r
) (

5sA
(

⇀
r
)

− 1
) (

5sC
(

⇀
r
)

− 1
) (

5sA
(

⇀
r
)

− 2
)

(2.68)

w311

(
⇀
r
)

� 125

6
sA

(
⇀
r
)
sB

(
⇀
r
)
sC

(
⇀
r
) (

5sA
(

⇀
r
)

− 1
) (

5sA
(

⇀
r
)

− 2
)

(2.69)

w131

(
⇀
r
)

� 125

6
sB

(
⇀
r
)
sC

(
⇀
r
)
sA

(
⇀
r
) (

5sB
(

⇀
r
)

− 1
) (

5sB
(

⇀
r
)

− 2
)

(2.70)
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w113

(
⇀
r
)

� 125

6
sC

(
⇀
r
)
sA

(
⇀
r
)
sB

(
⇀
r
) (

5sC
(

⇀
r
)

− 1
) (

5sC
(

⇀
r
)

− 2
)

(2.71)

w221

(
⇀
r
)

� 125

4
sA

(
⇀
r
)
sB

(
⇀
r
)
sC

(
⇀
r
) (

5sA
(

⇀
r
)

− 1
) (

5sB
(

⇀
r
)

− 1
)

(2.72)

w122

(
⇀
r
)

� 125

4
sB

(
⇀
r
)
sC

(
⇀
r
)
sA

(
⇀
r
) (

5sB
(

⇀
r
)

− 1
) (

5sC
(

⇀
r
)

− 1
)

(2.73)

w212

(
⇀
r
)

� 125

4
sC

(
⇀
r
)
sA

(
⇀
r
)
sB

(
⇀
r
) (

5sC
(

⇀
r
)

− 1
) (

5sA
(

⇀
r
)

− 1
)

(2.74)

2.3 Piecewise Linear Interpolation

Let us consider the analytical formulae for the piecewise interpolation on the unstruc-
tured triangular grids divided into small triangles [1]. Using this type of interpolation,
one can obtain the continuous piecewise linear interpolation and construct different
types of the hybrid interpolation on the unstructured triangular grids. Consider the
piecewise interpolation on N 2 small triangles discussed in Sect. 2.2 and formed by
reference points for polynomial interpolation with degree N varied from 2 to 5. One
can find these small triangles in Figs. 2.6, 2.7, 2.8 and 2.9. They are numbered using
grey color.

Note that in this Sect. 2.3 only the case is considered, when a point under consider-
ation lays in the big triangle ABC and relative areas discussed in Sect. 2.2. Therefore,
the following inequalities for these points are always satisfied:

(sA ∈ [0, 1]) ∧ (sB ∈ [0, 1]) ∧ (sC ∈ [0, 1]) be f orethevaluesinre f erence.
(2.75)

Fig. 2.6 Small triangles
based on reference points for
polynomial interpolation
with order 2

Fig. 2.7 Small triangles
based on reference points for
polynomial interpolation
with order 3
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Fig. 2.8 Small triangles
based on reference points for
polynomial interpolation
with order 4

Fig. 2.9 Small triangles
based on reference points for
polynomial interpolation
with order 5

All mathematical expressions for N = 2 and N = 3 are adduced in Sects. 2.3.1
and 2.3.4, respectively. In order to diminish the amount of mathematical expressions,
four types of tables are determined in Sect. 2.3.2. These tables for N varied from 2
to 5 are adduced in Sects. 2.3.3, 2.3.5–2.3.7, respectively.

2.3.1 Algorithms and Analytical Formulae for N = 2

Let us consider degree N � 2. 4 small triangles are numbered in Fig. 2.6.
The algorithm includes the following steps:
Step 1. If the relative area satisfies the inequality:

2sA > 1, (2.76)

then all the relative areas satisfy the following inequalities:
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(2sA ∈ (1, 2]) ∧ (2sB ∈ [0, 1]) ∧ (2sC ∈ [0, 1]) , (2.77)

and, therefore, the point under consideration lays in the small triangle 200, 110,
101 numbered 1 in Fig. 2.6 and one can determine a value of the piecewise linear
interpolation using Eq. 2.78.

u
(

⇀

r
)

� (2sA − 1) u200 + 2sBu110 + 2sCu101 (2.78)

Note that the coefficients before the values in reference points uabc (Eq. 2.78)
and, hereinafter, in Sect. 2.3 mean the relative areas (Eq. 2.10) that were discussed
in Sect. 2.2, but for the relatively small triangle. For example, the relative areas for
small triangle 200, 110, 101 numbered 1 in Fig. 2.6 can be found on the basis of the
relative areas for the initial big triangle 200, 020, 002 using Eqs. 2.79–2.81.

(sA)200,110,101 � 2 (sA)200,020,002 − 1 (2.79)

(sB)200,110,101 � 2 (sB)200,020,002 (2.80)

(sC)200,110,101 � 2 (sC)200,020,002 (2.81)

Step 2. If the relative area satisfies the inequality:

2sB > 1, (2.82)

then all the relative areas satisfy the following inequalities

(2sA ∈ [0, 1]) ∧ (2sB ∈ (1, 2]) ∧ (2sC ∈ [0, 1]) , (2.83)

and, therefore, the point under consideration lays in the small triangle 110, 020,
011 numbered 2 in Fig. 2.6 and one can determine a value of the piecewise linear
interpolation using Eq. 2.84.

u
(

⇀

r
)

� 2sAu110 + (2sB − 1) u020 + 2sCu011 (2.84)

Step 3. If the relative area satisfies the inequality:

2sC > 1, (2.85)

then all the relative areas satisfy the following inequalities:

(2sA ∈ [0, 1]) ∧ (2sB ∈ [0, 1]) ∧ (2sC ∈ (1, 2]) , (2.86)

and, therefore, the point under consideration lays in the small triangle 101, 011,
002 numbered 3 in Fig. 2.6 and one can determine a value of the piecewise linear
interpolation using Eq. 2.87.
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Table 2.1 Inequalities for
finding the small triangle, in
which the point under
consideration lies for N = 2,
table of the first type

No 2sA 2sB 2sC

1 >1 – –

2 – >1 –

3 – – >1

4 – – –

u
(

⇀

r
)

� 2sAu101 + 2sBu011 + (2sC − 1) u002 (2.87)

Step 4. If all the inequalities 2.76, 2.82, and 2.85 are false, then all the relative
areas satisfy the following inequalities:

(2sA ∈ [0, 1]) ∧ (2sB ∈ [0, 1]) ∧ (2sC ∈ [0, 1]) , (2.88)

and, therefore, the point under consideration lays in the small triangle 011, 101,
110 numbered 4 in Fig. 2.6 and one can determine a value of the piecewise linear
interpolation using Eq. 2.89.

u
(

⇀

r
)

� (1 − 2sA) u011 + (1 − 2sB) u101 + (1 − 2sC) u110 (2.89)

2.3.2 Types of Tables and Their Description

In order to summarize the information in Sects. 2.3.1 and 2.3.4 and to diminish the
amount of mathematical expressions in the cases of N = 4 and N = 5, four types of
tables are defined. The lines in the tables help to catch the topological similarity of
the formulae and due to this it is suitable to search for errors and misprints in the
program code developed based on these tables and appropriate analytical formulae.

Tables of the first type contain the inequalities for finding the small triangle.
Table 2.1 in Sect. 2.3.3, Table 2.5 in Sect. 2.3.4, Table 2.9 in Sect. 2.3.6, and Table
2.13 in Sect. 2.3.7 are the tables of the first type.

In order to obtain an inequality based on the filled cell in row I and in column
J from the table of the first type, one can take the relative area in the zero row and
column J and put it before the condition in the cell IJ . For example, the inequality
based on the cell (3, 3) in Table 2.1 could be written as follows:

2sC > 1. (2.90)

In order to obtain a logical expression based on the row I in the table of first type,
one can write the conjunction of all inequalities based on the cells in this row. For
example, the logical expression based on the row 9 from Table 2.13 could be written
as follows:
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Table 2.2 Logical
expressions being true if the
point under consideration lies
into the small triangle for
N = 2, table of the second type

No 2sA ∈ 2sB ∈ 2sC ∈
1 (1, 2] [0, 1] [0, 1]

2 [0, 1] (1, 2] [0, 1]

3 [0, 1] [0, 1] (1, 2]

4 [0, 1] [0, 1] [0, 1]

Table 2.3 The vertices of the
small triangles for N = 2,
table of the third type

No A′ B′ C′

1 200 110 101

2 110 020 011

3 101 011 002

4 011 101 110

(5sB < 1) ∧ (5vC > 3). (2.91)

Tables of the second type contain the logical expressions that are being true if
the point under consideration is into the small triangle with number in the zero
column. Table 2.2 in Sect. 2.3.3, Table 2.6 in Sect. 2.3.4, Table 2.10 in Sect. 2.3.6,
and Table 2.14 in Sect. 2.3.7 are the tables of the second type.

In order to obtain a logical expression based on the cell in row I and in column
J from the table of the second type, one can take the relative area in the zero row
and column J and put it before the segment in the cell IJ . For example, the logical
expression based on the cell (2, 3) in Table 2.2 could be written as follows:

2sC ∈ [0, 1]. (2.92)

In order to obtain a logical expression based on the row I in the table of the second
type, one can write the conjunction of all logical expression based on the cells in this
row I . For example, the logical expression based on the row 3 in Table 2.2 could be
written as follows:

(2sA ∈ [0, 1]) ∧ (2sB ∈ [0, 1]) ∧ (2sC ∈ (1, 2]). (2.93)

Tables of the third type contain the reference points corresponding to the vertices
of the small triangles. Table 2.3 in Sect. 2.3.3, Table 2.7 in Sect. 2.3.4, Table 2.11 in
Sect. 2.3.6, and Table 2.15 in Sect. 2.3.7 are the tables of the third type.

Tables of the fourth type contain the formulae for relative areas corresponding to
the appropriate vertices of the small triangles. Table 2.4 in Sect. 2.3.3, Table 2.8 in
Sect. 2.3.4, Table 2.12 in Sect. 2.3.6, and Table 2.16 in Sect. 2.3.7 are the tables of
the fourth type.

Note that only the values NsA, NsB, NsC are used in all types of tables.
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Table 2.4 Formulae for
relative areas corresponding
to the appropriate vertices of
the small triangles for N = 2,
table of the fourth type

No sA′ sB′ sC′

1 2sA − 1 2sB 2sC
2 2sA 2sB − 1 2sC
3 2sA 2sB 2sC − 1

4 1 − 2sA 1 − 2sB 1 − 2sC

2.3.3 Tables and Algorithms for N = 2

If all of the logical expressions corresponding to the rows 1, 2, …, I − 1 in Table 2.1
are false and the logical expression corresponding to the row I in Table 2.1 is true, then
the logical expression corresponding to the row I in Table 2.2 is true and, therefore,
the point under consideration lies into the small triangle I with vertices given in
Table 2.3. One can find the relative areas for its vertices in Table 2.4.

2.3.4 Algorithms and Analytical Formulae for N = 3

Let us consider degree N � 3. 9 small triangles are numbered in Fig. 2.7.
The algorithm includes the following steps:
Step 1. If the relative area satisfies the inequality:

3sA > 2, (2.94)

then all the relative areas satisfy the following inequalities:

(3sA ∈ (2, 3]) ∧ (3sB ∈ [0, 1]) ∧ (3sC ∈ [0, 1]), (2.95)

and, therefore, the point under consideration lays in the small triangle 300, 210,
201 numbered 1 in Fig. 2.7 and one can determine a value of the piecewise linear
interpolation using Eq. 2.96.

u
(

⇀

r
)

� (3sA − 2) u300 + 3sBu210 + 3sCu201 (2.96)

Step 2. If the relative area satisfies the inequality:

3sB > 2, (2.97)

then all the relative areas satisfy the following inequalities:

(3sA ∈ [0, 1]) ∧ (3sB ∈ (2, 3]) ∧ (3sC ∈ [0, 1]) , (2.98)
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and, therefore, the point under consideration lays in the small triangle 120, 030,
021 numbered 2 in Fig. 2.7 and one can determine a value of the piecewise linear
interpolation using Eq. 2.99.

u
(

⇀

r
)

� 3sAu120 + (3sB − 2) u030 + 3sCu021 (2.99)

Step 3. If the relative area satisfies the inequality:

3sC > 2, (2.100)

then all the relative areas satisfy the following inequalities:

(3sA ∈ [0, 1]) ∧ (3sB ∈ [0, 1]) ∧ (3sC ∈ (2, 3]), (2.101)

and, therefore, the point under consideration lays in the small triangle 102, 012,
003 numbered 3 in Fig. 2.7 and one can determine a value of the piecewise linear
interpolation using Eq. 2.102.

u
(

⇀

r
)

� 3sAu102 + 3sBu012 + (3sC − 2) u003 (2.102)

Step 4. If the inequality 2.94 is false and the following inequalities are true:

(3sB < 1) ∧ (3sC < 1), (2.103)

then all the relative areas satisfy the following inequalities:

(3sA ∈ [1, 2]) ∧ (3sB ∈ [0, 1)) ∧ (3sC ∈ [0, 1)), (2.104)

and, therefore, the point under consideration lays in the small triangle 111, 201,
210 numbered 4 in Fig. 2.7 and one can determine a value of the piecewise linear
interpolation using Eq. 2.105.

u
(

⇀

r
)

� (2 − 3sA) u111 + (1 − 3sB) u201 + (1 − 3sC) u210 (2.105)

Step 5. If the inequality 2.97 is false and the following inequalities are true:

(3sA < 1) ∧ (3sC < 1), (2.106)

then all the relative areas satisfy the following inequalities:

(3sA ∈ [0, 1)) ∧ (3sB ∈ [1, 2]) ∧ (3sC ∈ [0, 1)) , (2.107)
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and, therefore, the point under consideration lays in the small triangle 021, 111,
120 numbered 5 in Fig. 2.7 and one can determine a value of the piecewise linear
interpolation using Eq. 2.108.

u
(

⇀

r
)

� (1 − 3sA) u021 + (2 − 3sB) u111 + (1 − 3sC) u120 (2.108)

Step 6. If the inequality 2.100 is false and the following inequalities are true:

(3sA < 1) ∧ (3sB < 1), (2.109)

then all the relative areas satisfy the following inequalities:

(3sA ∈ [0, 1)) ∧ (3sB ∈ [0, 1)) ∧ (3sC ∈ [1, 2]), (2.110)

and, therefore, the point under consideration lays in the small triangle 012, 102,
111 numbered 6 in Fig. 2.7 and one can determine a value of the piecewise linear
interpolation using Eq. 2.111.

u
(

⇀

r
)

� (1 − 3sA) u012 + (1 − 3sB) u102 + (2 − 3sC) u111 (2.111)

Step 7. If the inequalities 2.97, 2.100, 2.106, and 2.109 are false and

3sA < 1, (2.112)

then all the relative areas satisfy the following inequalities:

(3sA ∈ [0, 1)) ∧ (3sB ∈ [1, 2]) ∧ (3sC ∈ [1, 2]), (2.113)

and, therefore, the point under consideration lays in the small triangle 111, 021,
012 numbered 7 in Fig. 2.7 and one can determine a value of the piecewise linear
interpolation using Eq. 2.114.

u
(

⇀

r
)

� 3sAu111 + (3sB − 1) u021 + (3sC − 1) u012 (2.114)

Step 8. If the inequalities 2.94, 2.100, 2.103, and 2.109 are false and

3sB < 1, (2.115)

then all the relative areas satisfy the following inequalities:

(3sA ∈ [1, 2]) ∧ (3sB ∈ [0, 1)) ∧ (3sC ∈ [1, 2]), (2.116)
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Table 2.5 Inequalities for finding the small triangle, in which the point under consideration lies
for N = 3, table of the first type

No 3sA 3sB 3sC No 3sA 3sB 3sC No 3sA 3sB 3sC

1 >2 – – 4 – <1 <1 7 <1 – –

2 – >2 – 5 <1 – <1 8 – <1 –

3 – – >2 6 <1 <1 – 9 – – –

and, therefore, the point under consideration lays in the small triangle 201, 111,
102 numbered 8 in Fig. 2.7 and one can determine a value of the piecewise linear
interpolation using Eq. 2.117.

u
(

⇀

r
)

� (3sA − 1) u201 + 3sBu111 + (3sC − 1) u102 (2.117)

Step 9. If the inequalities 2.94, 2.97, 2.103, and 2.106 are false and

3sC ≤ 1, (2.118)

then all the relative areas satisfy the following inequalities:

(3sA ∈ [1, 2]) ∧ (3sB ∈ [1, 2]) ∧ (3sC ∈ [0, 1]), (2.119)

and, therefore, the point under consideration lays in the small triangle 210, 120,
111 numbered 9 in Fig. 2.7 and one can determine a value the of piecewise linear
interpolation using Eq. 2.120.

u
(

⇀

r
)

� (3sA − 1) u210 + (3sB − 1) u120 + 3sCu111 (2.120)

Note that, when all the inequalities 2.94, 2.97, 2.100, 2.103, 2.106, 2.109, 2.112,
and 2.115 are false, the inequalities 2.119 are true and one can also use Eq. 2.120.

2.3.5 Tables and Algorithms for N = 3

If all of the logical expressions corresponding to the rows 1, 2, …, I − 1 in Table 2.5
are false and the logical expression corresponding to the row I in Table 2.5 is true, then
the logical expression corresponding to the row I in Table 2.6 is true and, therefore,
the point under consideration lies into the small triangle I with vertices given in
Table 2.7. One can find the relative areas for its vertices in Table 2.8.
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Table 2.6 Logical expressions being true if the point under consideration lies into the small triangle
for N = 3, table of the second type

No 3sA ∈ 3sB ∈ 3sC ∈ No 3sA ∈ 3sB ∈ 3sC ∈ No 3sA ∈ 3sB ∈ 3sC ∈
1 (2, 3] [0, 1] [0, 1] 4 [1, 2] [0, 1) [0, 1) 7 [0, 1) [1, 2] [1, 2]

2 [0, 1] (2, 3] [0, 1] 5 [0, 1) [1, 2] [0, 1) 8 [1, 2] [0, 1) [1, 2]

3 [0, 1] [0, 1] (2, 3] 6 [0, 1) [0, 1) [1, 2] 9 [1, 2] [1, 2] [0, 1]

Table 2.7 The vertices of the small triangles for N = 3, table of the third type

No A′ B′ C′ No A′ B′ C′ No A′ B′ C’

1 300 210 201 4 111 201 210 7 111 021 012

2 120 030 021 5 021 111 120 8 201 111 102

3 102 012 003 6 012 102 111 9 210 120 111

Table 2.8 Formulae for relative areas corresponding to the appropriate vertices of the small trian-
gles for N = 3, table of the fourth type

No sA′ sB′ sC′ No sA′ sB′ sC′ No sA′ sB′ sC′

1 3sA − 2 3sB 3sC 4 2− 3sA 1− 3sB 1−3sC 7 3sA 3sB − 1 3sC −1

2 3sA 3sB − 2 3sC 5 1− 3sA 2− 3sB 1−3sC 8 3sA − 1 3sB 3sC −1

3 3sA 3sB 3sC −2 6 1− 3sA 1− 3sB 2−3sC 9 3sA − 1 3sB − 1 3sC

Table 2.9 Inequalities for finding the small triangle, in which the point under consideration lies
for N = 4, table of the first type

No 4sA 4sB 4sC No 4sA 4sB 4sC No 4sA 4sB 4sC

1 >3 – – 7 <1 – >2 13 <1 – –

2 – >3 – 8 – <1 >2 14 – <1 –

3 – – >3 9 >2 <1 – 15 – – <1

4 – <1 <1 10 >2 – <1 16 – – –

5 <1 – <1 11 – >2 <1

6 <1 <1 – 12 <1 >2 –

2.3.6 Tables and Algorithms for N = 4

Let us consider degree N � 4. 16 small triangles are numbered in Fig. 2.8.
If all of the logical expressions corresponding to the rows 1, 2, …, I − 1 in

Table 2.9 are false and the logical expression corresponding to the row I in Table 2.9
is true, then the logical expression corresponding to the row I in Table 2.10 is true
and therefore the point under consideration lies into the small triangle I with vertices
given in Table 2.11. One can find the relative areas for its vertices in Table 2.12.

For example, I = 2. If

(4sA ≤ 1) ∧ (4sB > 3), (2.121)
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Table 2.10 Logical expressions being true if the point under consideration lies into the small
triangle for N = 4, table of the second type

No 4sA ∈ 4sB ∈ 4sC ∈ No 4sA ∈ 4sB ∈ 4sC ∈ No 4sA ∈ 4sB ∈ 4sC ∈
1 (3, 4] [0, 1] [0, 1] 7 [0, 1) [1, 2] (2, 3] 13 [0, 1) [1, 2] [1, 2]

2 [0, 1] (3, 4] [0, 1] 8 [1, 2] [0, 1) (2, 3] 14 [1, 2] [0, 1) [1, 2]

3 [0, 1] [0, 1] (3, 4] 9 (2, 3] [0, 1) [1, 2] 15 [1, 2] [1, 2] [0, 1)

4 [2, 3] [0, 1) [0, 1) 10 (2, 3] [1, 2] [0, 1) 16 [1, 2] [1, 2] [1, 2]

5 [0, 1) [2, 3] [0, 1) 11 [1, 2] (2, 3] [0, 1)

6 [0, 1) [0, 1) [2, 3] 12 [0, 1) (2, 3] [1, 2]

Table 2.11 The vertices of the small triangles for N = 4, table of the third type

No A′ B′ C′ No A′ B′ C′ No A′ B′ C′

1 400 310 301 7 112 022 013 13 022 112 121

2 130 040 031 8 202 112 103 14 112 202 211

3 103 013 004 9 301 211 202 15 121 211 220

4 211 301 310 10 310 220 211 16 211 121 112

5 031 121 130 11 220 130 121

6 013 103 112 12 121 031 022

then

(4sA ∈ [0, 1]) ∧ (4sB ∈ (3, 4]) ∧ (4sC ∈ [0, 1]) (2.122)

and, therefore, the point under consideration lies into the small triangle with the
number 2 and vertices 110, 020, 011 and one can find a value of the piecewise linear
interpolation using Eq. 2.123.

u
(

⇀

r
)

� 4sA
(

⇀

r
)
u110 +

(
4sB

(
⇀

r
)

− 3
)
u020 + 4sC

(
⇀

r
)
u011 (2.123)

2.3.7 Tables and Algorithms for N = 5

Let us consider degree N � 5. 25 small triangles are numbered in Fig. 2.9.
If all of the logical expressions corresponding to the rows 1, 2, …, I − 1 in

Table 2.13 are false and the logical expression corresponding to the row I inTable 2.13
is true, then the logical expression corresponding to the row I in Table 2.14 is true
and, therefore, the point under consideration lies into the small triangle I with vertices
given in Table 2.15. One can find the relative areas for its vertices in Table 2.16.

For example, I = 12. If all of the logical expressions corresponding to the rows 1,
2, 3, 4, 5, 6, 7, 8, 9, 10, and 11 in Table 2.13 are false, and
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Table 2.13 Inequalities for finding the small triangle, in which the point under consideration lies
for N = 5, table of the first type

No 5sA 5sB 5sC No 5sA 5sB 5sC No 5sA 5sB 5sC

1 >4 – – 10 – >3 <1 19 <1 – >2

2 – >4 – 11 <1 – >3 20 >2 <1 –

3 – – >4 12 >3 <1 – 21 – >2 <1

4 – <1 <1 13 >2 >2 – 22 >2 – –

5 <1 – <1 14 – >2 >2 23 – >2 –

6 <1 <1 – 15 >2 – >2 24 – – >2

7 >3 – <1 16 >2 – <1 25 – – –

8 <1 >3 – 17 <1 >2 –

9 – <1 >3 18 – <1 >2

Table 2.14 Logical expressions being true if the point under consideration lies into the small
triangle for N = 5, table of the second type

No 5sA ∈ 5sB ∈ 5sC ∈ No 5sA ∈ 5sB ∈ 5sC ∈ No 5sA ∈ 5sB ∈ 5sC ∈
1 (4, 5] [0, 1] [0, 1] 10 [1, 2] (3, 4] [0, 1) 19 [0, 1) [1, 2] (2, 3]

2 [0, 1] (4, 5] [0, 1] 11 [0, 1) [1, 2] (3, 4] 20 (2, 3] [0, 1) [1, 2]

3 [0, 1] [0, 1] (4, 5] 12 (3, 4] [0, 1) [1, 2] 21 [1, 2] (2, 3] [0, 1)

4 [3, 4] [0, 1) [0, 1) 13 (2, 3] (2, 3] [0, 1] 22 (2, 3] [1, 2] [1, 2]

5 [0, 1) [3, 4] [0, 1) 14 [0, 1] (2, 3] (2, 3] 23 [1, 2] (2, 3] [1, 2]

6 [0, 1) [0, 1) [3, 4] 15 (2, 3] [0, 1] (2, 3] 24 [1, 2] [1, 2] (2, 3]

7 (3, 4] [1, 2] [0, 1) 16 (2, 3] [1, 2] [0, 1) 25 [1, 2] [1, 2] [1, 2]

8 [0, 1) (3, 4] [1, 2] 17 [0, 1) (2, 3] [1, 2]

9 [1, 2] [0, 1) (3, 4] 18 [1, 2] [0, 1) (2, 3]

Table 2.15 The vertices of the small triangles for N = 5, table of the third type

No A’ B’ C’ No A’ B’ C’ No A’ B’ C’

1 500 410 401 10 230 140 131 19 023 113 122

2 140 050 041 11 113 023 014 20 212 302 311

3 104 014 005 12 401 311 302 21 131 221 230

4 311 401 410 13 320 230 221 22 311 221 212

5 041 131 140 14 122 032 023 23 221 131 122

6 014 104 113 15 302 212 203 24 212 122 113

7 410 320 311 16 221 311 320 25 122 212 221

8 131 041 032 17 032 122 131

9 203 113 104 18 113 203 212



2 Interpolation on Unstructured Triangular Grids 31

Ta
bl
e
2.
16

Fo
rm

ul
ae

fo
r
re
la
tiv

e
ar
ea
s
co
rr
es
po

nd
in
g
to

th
e
ap
pr
op

ri
at
e
ve
rt
ic
es

of
th
e
sm

al
lt
ri
an
gl
es

fo
r
N

=
5,

ta
bl
e
of

th
e
fo
ur
th

ty
pe

N
o

s A
’

s B
’

s C
’

N
o

s A
’

s B
’

s C
’

N
o

s A
’

s B
’

s C
’

1
5s

A
−

4
5s

B
5s

C
10

5s
A

−
1

5s
B

−
3

5s
C

19
1

−
5s

A
2

−
5s

B
3

−
5s

C

2
5s

A
5s

B
−

4
5s

C
11

5s
A

5s
B

−
1

5s
C

−
3

20
3

−
5s

A
1

−
5s

B
2

−
5s

C

3
5s

A
5s

B
5s

C
−

4
12

5s
A

−
3

5s
B

5s
C

−
1

21
2

−
5s

A
3

−
5s

B
1

−
5s

C

4
4

−
5s

A
1

−
5s

B
1

−
5s

C
13

5s
A

−
2

5s
B

−
2

5s
C

22
5s

A
−

2
5s

B
−

1
5s

C
−

1

5
1

−
5s

A
4

−
5s

B
1

−
5s

C
14

5s
A

5s
B

−
2

5s
C

−
2

23
5s

A
−

1
5s

B
−

2
5s

C
−

1

6
1

−
5s

A
1

−
5s

B
4

−
5s

C
15

5s
A

−
2

5s
B

5s
C

−
2

24
5s

A
−

1
5s

B
−

1
5s

C
−

2

7
5s

A
−

3
5s

B
−

1
5s

C
16

3
−

5s
A

2
−

5s
B

1
−

5s
C

25
2

−
5s

A
2

−
5s

B
2

−
5s

C

8
5s

A
5s

B
−

3
5s

C
−

1
17

1
−

5s
A

3
−

5s
B

2
−

5s
C

9
5s

A
−

1
5s

B
5s

C
−

3
18

2
−

5s
A

1
−

5s
B

3
−

5s
C



32 A. V. Favorskaya

(5sA > 3) ∧ (5sB < 1) , (2.124)

then

(5sA ∈ (3, 4]) ∧ (5sB ∈ [0, 1)) ∧ (5sC ∈ [1, 2]) (2.125)

and, therefore, the point under consideration lies into the small triangle with the
number 12 and vertices 401, 311, 302 and one can find a value of the piecewise
linear interpolation using Eq. 2.126.

u
(

⇀

r
)

�
(
5sA

(
⇀

r
)

− 3
)
u401 + 5sB

(
⇀

r
)
u311 +

(
5sC

(
⇀

r
)

− 1
)
u302 (2.126)

2.4 Several Approaches for Hybrid Interpolation

In this section, several approaches for the hybrid interpolation on the unstructured
triangular grids [1] are considered. Using algorithms for the piecewise linear inter-
polation discussed in Sect. 2.3, one can obtain the hierarchical nested unstructured
triangular grids described in Sect. 2.4.1. In Sect. 2.4.2, the recurrent formulae for
recalculation of the local reference points’ indices to the global reference points’
indices are discussed. In Sect. 2.4.3, an example of hybridization called the hybrid
parabolic–linear interpolation is considered. In Sect. 2.4.4, another example of
hybridization based on a limiter is discussed. In Sect. 2.4.5, an example of approach
based on both hierarchical nested unstructured grids and hybridization called
parabolic interpolation on the reference points for interpolation of fourth order is
offered.

2.4.1 Hierarchical Nested Unstructured Triangular Grids

Using algorithms for the piecewise linear interpolation discussed in Sect. 2.3, one
can obtain the hybrid hierarchical unstructured grids. The application of these types
of grids allows to avoid the resources’ spending like time of software execution for
the detailed unstructured triangular grid. This result is achieved due to the analytical
expressions given in Sect. 2.3 and allows to understand, in which triangle the point
under consideration lies without using the search algorithms. One can use the hierar-
chical nested unstructured triangular grids applying the following algorithm for the
point under consideration

⇀

r :

Step 0. Firstly, the relative areas sA
(

⇀

r
)
, sB

(
⇀

r
)
, and sC

(
⇀

r
)
corresponding to the

big triangle ABC should be calculated using Eqs. 2.6–2.10, respectively.
Step 1. For the first level of hybridization with N1 using the algorithms discussed

in Sect. 2.3, one can find the reference points associated with the big triangle ABC
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forming the small triangle A1B1C1 and calculate the corresponding relative areas
sA,1 (sA), sB,1 (sB), and sC,1 (sC).

Step 2. For the second level of hybridization with N2 using the algorithms dis-
cussed in Sect. 2.3, one can find the reference points associated with the triangle
A1B1C1 forming the small triangle A2B2C2 and calculate the corresponding relative
areas sA,2

(
sA,1

)
, sB,2

(
sB,1

)
, and sC,2

(
sC,1

)
.

Step 3. For the third level of hybridization with N3 using the algorithms discussed
in Sect. 2.3, one can find the reference points associated with the triangle A2B2C2

forming the small triangle A3B3C3 and calculate the corresponding relative areas
sA,3

(
sA,2

)
, sB,3

(
sB,2

)
, and sC,3

(
sC,2

)
.

Step k. For the k level of hybridization with Nk using the algorithms discussed in
Sect. 2.3, one can find the reference points associatedwith the triangle Ak−1Bk−1Ck−1

forming the small triangle Ak BkCk and calculate the corresponding relative areas
sA,k

(
sA,k−1

)
, sB,k

(
sB,k−1

)
, and sC,k

(
sC,k−1

)
.

Note that one can find the coordinates of the reference point abc associated with
the triangle ABC using Eq. 2.127.

⇀

r abc � a

N

(
⇀

r A − ⇀

rC
)
+

b

N

(
⇀

r B − ⇀

rC
)
+

⇀

rC (2.127)

Figure 2.10 shows a visualization of this algorithm.

2.4.2 Formulae for Recalculation from Local to Global
Indices

In order to diminish the amount of calculations, the values of radius-vectors corre-
sponding to the reference point into the big triangle ABC of the hierarchical nested
unstructured triangular grid are defined using the recurrent formulae for recalculation
from local reference points’ indices to global reference points’ indices. One can use
this recurrent formulae before calculations and save the non-recurrent formulae for
recalculation from local to global reference points’ indices as a table and then use
Eq. 2.127 with global three-digital index abc and N � N1N2 . . . NK .

There are (N+1)(N+2)
2 reference points into the triangle if the appropriate order

is equal to N . One can determine the rule for recalculation from serial reference

points’ index I ∈
[
1, (N+1)(N+2)

2

]
into three-digital index abc introduced in Sect. 2.2

(Eq. 2.128) and vice versa (Eq. 2.129).

I ∈
[
1,

(N + 1) (N + 2)

2

]
�→ {a (I ) , b (I ) , c (I )} (2.128)

{a ∈ [0, N ] , b ∈ [0, N ] , c ∈ [0, N ] , a + b + c � N } �→ I (a, b, c) (2.129)

The steps of this algorithm are mentioned below.
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Fig. 2.10 Use of the hierarchical nested unstructured triangular grid

Step 1. N 2
1 small triangles A1B1C1 with the serial indices J1 ∈ [

1, N 2
1

]
are known

into the initial triangle ABC. The set of the three-digital indices is defined as:

a (a, J1) b (a, J1) c (a, J1) (2.130)

a (b, J1) b (b, J1) c (b, J1) (2.131)

a (c, J1) b (c, J1) c (c, J1) (2.132)

relatively the initial triangle ABC for all of the three vertices A1 (Eq. 2.130), B1

(Eq. 2.131), and C1 (Eq. 2.132) of each of the triangles A1B1C1 with the serial
indices J1 ∈ [

1, N 2
1

]
are known and represented into the tables of the third type in

Sect. 2.3.
Step 2.0. All steps starting from Step 2 are carried out for each of the small

triangles A1B1C1 with the serial indices J1 ∈ [
1, N 2

1

]
.

Step 2.1. For each of the small triangles A1B1C1 with the serial indices J1 ∈[
1, N 2

1

]
, the local indices of (N2+1)(N2+2)

2 reference points into the small triangle
A1B1C1 are known. For each of these reference points with the serial indices

I2 ∈
[
1, (N2+1)(N2+2)

2

]
, one can calculate the three-digital indices a1 (I2), b1 (I2),

and c1 (I2) relatively the small triangle A1B1C1 with the serial index J1 ∈ [
1, N 2

1

]
using Eq. 2.128 for N2.
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Thus, for each of these (N2+1)(N2+2)
2 reference points with the serial indices I2

one can calculate new three-digital indices relatively the initial triangle ABC using
Eqs. 2.133–2.135.

a (I2, J1) � a1 (I2) a (a, J1) + b1 (I2) a (b, J1) + c1 (I2) a (c, J1) (2.133)

b (I2, J1) � a1 (I2) b (a, J1) + b1 (I2) b (b, J1) + c1 (I2) b (c, J1) (2.134)

c (I2, J1) � a1 (I2) c (a, J1) + b1 (I2) c (b, J1) + c1 (I2) c (c, J1) (2.135)

Step 2.2 Into each of the small triangles A1B1C1 with the serial indices J1 ∈[
1, N 2

1

]
, N 2

2 small triangles A2B2C2 with the serial indices J2 ∈ [
1, N 2

2

]
are known.

The set of the three-digital indices:

a1 (a, J2) b1 (a, J2) c1 (a, J2) (2.136)

a1 (b, J2) b1 (b, J2) c1 (b, J2) (2.137)

a1 (c, J2) b1 (c, J2) c1 (c, J2) (2.138)

relatively the small triangle A1B1C1 with the serial index J1 ∈ [
1, N 2

1

]
for all of

the three vertices A2 (Eq. 2.136), B2 (Eq. 2.137), and C2 (Eq. 2.138) of each of the
triangles A2B2C2 with the serial indices J2 ∈ [

1, N 2
2

]
independent on J1 are known

and represented into the tables of the third type in Sect. 2.3.

Thus, one can find the set of the serial indices I2 ∈
[
1, (N2+1)(N2+2)

2

]
for all of

the three vertices A2 (Eq. 2.139), B2 (Eq. 2.140), and C2 (Eq. 2.141) of each of the
triangles A2B2C2 with the serial indices J2 ∈ [

1, N 2
2

]
using Eq. 2.129 for N2.

I2 (a, J2) � I2 (a1 (a, J2) , b1 (a, J2) , c1 (a, J2)) (2.139)

I2 (b, J2) � I2 (a1 (b, J2) , b1 (b, J2) , c1 (b, J2)) (2.140)

I2 (c, J2) � I2 (a1 (c, J2) , b1 (c, J2) , c1 (c, J2)) (2.141)

Therefore, using calculations carries out during Step 2.1 the set of the three-digital
indices:

a (a, J1, J2) b (a, J1, J2) c (a, J1, J2) (2.142)

a (b, J1, J2) b (b, J1, J2) c (b, J1, J2) (2.143)

a (c, J1, J2) b (c, J1, J2) c (c, J1, J2) (2.144)

relatively the initial triangle ABC for all of the three vertices A2 (Eq. 2.142), B2

(Eq. 2.143), and C2 (Eq. 2.144) of each of the triangles A2B2C2 with the serial
indices J2 ∈ [

1, N 2
2

]
are known. For example, using Eq. 2.133 one can find:

b (a, J1, J2) � b (I2 (a, J2) , J1) . (2.145)



36 A. V. Favorskaya

Step 3.0. All steps starting from Step 3 are carried out for each of the small
triangles A2B2C2 with the serial indices J2 ∈ [

1, N 2
2

]
.

Step 3.1. For each of the small triangles A2B2C2 with the serial indices J2 ∈[
1, N 2

2

]
, the local indices of (N3+1)(N3+2)

2 reference points into the small triangle
A2B2C2 are known. For each of these reference points with the serial indices

I3 ∈
[
1, (N3+1)(N3+2)

2

]
, one can calculate the three-digital indices a2 (I3), b2 (I3),

and c2 (I3) relatively the small triangle A2B2C2 with the serial index J2 ∈ [
1, N 2

2

]
using Eq. 2.128 for N3.

Thus, for each of these (N3+1)(N3+2)
2 reference points with the serial indices I3

one can calculate new three-digital indices relatively the initial triangle ABC using
Eqs. 2.146–2.148.

a (I3, J1, J2) � a2 (I3) a (a, J1, J2) + b2 (I3) a (b, J1, J2) + c2 (I3) a (c, J1, J2)
(2.146)

b (I3, J1, J2) � a2 (I3) b (a, J1, J2) + b2 (I3) b (b, J1, J2) + c2 (I3) b (c, J1, J2)

(2.147)

c (I3, J1, J2) � a2 (I3) c (a, J1, J2) + b2 (I3) c (b, J1, J2) + c2 (I3) c (c, J1, J2)

(2.148)

Step 3.2. Into each of the small triangles A2B2C2 with the serial indices J2 ∈[
1, N 2

2

]
, N 2

3 small triangles A3B3C3 with the serial indices J3 ∈ [
1, N 2

3

]
are known.

The set of the three-digital indices:

a2 (a, J3) b2 (a, J3) c2 (a, J3) (2.149)

a2 (b, J3) b2 (b, J3) c2 (b, J3) (2.150)

a2 (c, J3) b2 (c, J3) c2 (c, J3) (2.151)

relatively the small triangle A2B2C2 with the serial index J2 ∈ [
1, N 2

2

]
for all of

the three vertices A3 (Eq. 2.149), B3 (Eq. 2.150), and C3 (Eq. 2.151) of each of the
triangles A3B3C3 with the serial indices J3 ∈ [

1, N 2
3

]
independent on J1 and J2 are

known and represented into the tables of the third type in Sect. 2.3.

Thus, one can find the set of the serial indices I3 ∈
[
1, (N3+1)(N3+2)

2

]
for all of

the three vertices A3 (Eq. 2.152), B3 (Eq. 2.153), and C3 (Eq. 2.154) of each of the
triangles A3B3C3 with the serial indices J3 ∈ [

1, N 2
3

]
using Eq. 2.129 for N3.

I3 (a, J3) � I3 (a2 (a, J3) , b2 (a, J3) , c2 (a, J3)) (2.152)

I3 (b, J3) � I3 (a2 (b, J3) , b2 (b, J3) , c2 (b, J3)) (2.153)

I3 (c, J3) � I3 (a2 (c, J3) , b2 (c, J3) , c2 (c, J3)) (2.154)



2 Interpolation on Unstructured Triangular Grids 37

Therefore, using calculations carries out during Step 3.1 the set of the three-digital
indices:

a (a, J1, J2, J3) b (a, J1, J2, J3) c (a, J1, J2, J3) (2.155)

a (b, J1, J2, J3) b (b, J1, J2, J3) c (b, J1, J2, J3) (2.156)

a (c, J1, J2, J3) b (c, J1, J2, J3) c (c, J1, J2, J3) (2.157)

relatively the initial triangle ABC for all of the three vertices A3 (Eq. 2.155), B3

(Eq. 2.156), and C3 (Eq. 2.157) of each of the triangles A3B3C3 with the serial
indices J3 ∈ [

1, N 2
3

]
are known. For example, using Eq. 2.146 one can find:

b (a, J1, J2, J3) � b (I3 (a, J3) , J1, J2) . (2.158)

Step k.0. All steps starting with k are carried out for each of the small triangles
Ak−1Bk−1Ck−1 with the serial indices Jk−1 ∈ [

1, N 2
k−1

]
.

Step k.1. For each of the small triangles Ak−1Bk−1Ck−1 with the serial indices
Jk−1 ∈ [

1, N 2
k−1

]
, the local indices of (Nk+1)(Nk+2)

2 reference points into the small
triangle Ak−1Bk−1Ck−1 are known. For each of these reference points with the serial

indices Ik ∈
[
1, (Nk+1)(Nk+2)

2

]
, one can calculate the three-digital indices ak−1 (Ik),

bk−1 (Ik), and ck−1 (Ik) relatively the small triangle Ak−1Bk−1Ck−1 with the serial
index Jk−1 ∈ [

1, N 2
k−1

]
using Eq. 2.128 for Nk .

Thus, for each of these (Nk+1)(Nk+2)
2 reference points with the serial indices Ik

one can calculate new three-digital indices relatively the initial triangle ABC using
Eqs. 2.159–2.161.

a (Ik, J1, J2, . . . , Jk−1) � ak−1 (Ik) a (a, J1, J2, . . . , Jk−1)

+ bk−1 (Ik) a (b, J1, J2, . . . , Jk−1)

+ ck−1 (Ik) a (c, J1, J2, . . . , Jk−1) (2.159)

b (Ik, J1, J2, . . . , Jk−1) � ak−1 (Ik) b (a, J1, J2, . . . , Jk−1)

+ bk−1 (Ik) b (b, J1, J2, . . . , Jk−1)

+ ck−1 (Ik) b (c, J1, J2, . . . , Jk−1) (2.160)

c (Ik, J1, J2, . . . , Jk−1) � ak−1 (Ik) c (a, J1, J2, . . . , Jk−1)

+ bk−1 (Ik) c (b, J1, J2, . . . , Jk−1)

+ ck−1 (Ik) c (c, J1, J2, . . . , Jk−1) (2.161)

Step k.2. Into each of the small triangles Ak−1Bk−1Ck−1 with the serial indices
Jk−1 ∈ [

1, N 2
k−1

]
, N 2

k small triangles Ak BkCk with the serial indices Jk ∈ [
1, N 2

k

]
are known. The set of the three-digital indices:

ak−1 (a, Jk) bk−1 (a, Jk) ck−1 (a, Jk) (2.162)

ak−1 (b, Jk) bk−1 (b, Jk) ck−1 (b, Jk) (2.163)
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ak−1 (c, Jk) bk−1 (c, Jk) ck−1 (c, Jk) (2.164)

relatively the small triangle Ak−1Bk−1Ck−1 with the serial index Jk−1 ∈ [
1, N 2

k−1

]
for all of the three vertices Ak (Eq. 2.162), Bk (Eq. 2.163), and Ck (Eq. 2.164) of
each of the triangles Ak BkCk with the serial indices Jk ∈ [

1, N 2
k

]
independent on J1,

J2,…, Jk−1 are known and represented into the tables of the third type in Sect. 2.3.

Thus, one can find the set of the serial indices Ik ∈
[
1, (Nk+1)(Nk+2)

2

]
for all of

the three vertices Ak (Eq. 2.165), Bk (Eq. 2.166), and Ck (Eq. 2.167) of each of the
triangles Ak BkCk with the serial indices Jk ∈ [

1, N 2
k

]
using Eq. 2.129 for Nk .

Ik (a, Jk) � Ik (ak−1 (a, Jk) , bk−1 (a, Jk) , ck−1 (a, Jk)) (2.165)

Ik (b, Jk) � Ik (ak−1 (b, Jk) , bk−1 (b, Jk) , ck−1 (b, Jk)) (2.166)

Ik (c, Jk) � Ik (ak−1 (c, Jk) , bk−1 (c, Jk) , ck−1 (c, Jk)) (2.167)

Therefore, using calculations carries out during Step k.1 the set of the three-digital
indices:

a (a, J1, J2, . . . , Jk) b (a, J1, J2, . . . , Jk) c (a, J1, J2, . . . , Jk) (2.168)

a (b, J1, J2, . . . , Jk) b (b, J1, J2, . . . , Jk) c (b, J1, J2, . . . , Jk) (2.169)

a (c, J1, J2, . . . , Jk) b (c, J1, J2, . . . , Jk) c (c, J1, J2, . . . , Jk) (2.170)

relatively the initial triangle ABC for all of the three vertices Ak (Eq. 2.168), Bk

(Eq. 2.169), and Ck (Eq. 2.170) of each of the triangles Ak BkCk with the serial
indices Jk ∈ [

1, N 2
k

]
are known. For example, using Eq. 2.159 one can find:

b (a, J1, J2, . . . , Jk) � b (Ik (a, Jk) , J1, J2 . . . , Jk−1) . (2.171)

Step K−1.0. All steps starting with K−1 are carried out for each of the small
triangles AK−2BK−2CK−2 with the serial indices JK−2 ∈ [

1, N 2
K−2

]
.

Step K−1.1. For each of the small triangles AK−2BK−2CK−2 with the serial
indices JK−2 ∈ [

1, N 2
K−2

]
, the local indices of (NK−1+1)(NK−1+2)

2 reference points into
the small triangle AK−2BK−2CK−2 are known. For each of these reference points

with the serial indices IK−1 ∈
[
1, (NK−1+1)(NK−1+2)

2

]
, one can calculate the three-

digital indices aK−2 (IK−1), bK−2 (IK−1), and cK−2 (IK−1) relatively the small trian-
gle AK−2BK−2CK−2 with the index JK−2 ∈ [

1, N 2
K−2

]
using Eq. 2.128 for NK−1.

Thus, for each of these (NK−1+1)(NK−1+2)
2 reference points with the serial indices

IK−1 one can calculate new three-digital indices relatively the initial triangle ABC
using Eqs. 2.172–2.174.

a (IK , J1, J2, .., JK−2) � aK−2 (IK−1) a (a, J1, J2, . . . , JK−2)

+ bK−2 (IK−1) a (b, J1, J2, . . . , JK−2)

+ cK−2 (IK−1) a (c, J1, J2, . . . , JK−2) (2.172)
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b (IK , J1, J2, .., JK−2) � aK−2 (IK−1) b (a, J1, J2, . . . , JK−2)

+ bK−2 (IK−1) b (b, J1, J2, . . . , JK−2)

+ cK−2 (IK−1) b (c, J1, J2, . . . , JK−2) (2.173)

c (IK , J1, J2, .., JK−2) � aK−2 (IK−1) c (a, J1, J2, . . . , JK−2)

+ bK−2 (IK−1) c (b, J1, J2, . . . ., JK−2)

+ cK−2 (IK−1) c (c, J1, J2, . . . , JK−2) (2.174)

Step K−1.2. Into each of the small triangles AK−2BK−2CK−2 with the serial
indices JK−2 ∈ [

1, N 2
K−2

]
, N 2

K−1 small triangles AK−1BK−1CK−1 with the serial
indices JK−1 ∈ [

1, N 2
K−1

]
are known. The set of the three-digital indices:

aK−2 (a, JK−1) bK−2 (a, JK−1) cK−2 (a, JK−1) (2.175)

aK−2 (b, JK−1) bK−2 (b, JK−1) cK−2 (b, JK−1) (2.176)

aK−2 (c, JK−1) bK−2 (c, JK−1) cK−2 (c, JK−1) (2.177)

relatively the small triangle AK−2BK−2CK−2 with the serial index JK−2 ∈ [
1, N 2

K−2

]
for all of the three vertices AK−1 (Eq. 2.175), BK−1 (Eq. 2.176), andCK−1 (Eq. 2.177)
of each of the triangles AK−1BK−1CK−1 with the serial indices JK−1 ∈ [

1, N 2
K−1

]
independent on J1, J2,…, JK−2 are known and represented into the tables of the third
type in Sect. 2.3.

Thus, one can find the set of the serial indices IK−1 ∈
[
1, (NK−1+1)(NK−1+2)

2

]
for

all of the three vertices AK−1 (Eq. 2.178), BK−1 (Eq. 2.179), and CK−1 (Eq. 2.180)
of each of the triangles AK−1BK−1CK−1 with the serial indices JK−1 ∈ [

1, N 2
K−1

]
using Eq. 2.129 for NK−1.

IK−1 (a, JK−1) � IK−1 (aK−2 (a, JK−1) , bK−2 (a, JK−1) , cK−2 (a, JK−1))

(2.178)

IK−1 (b, JK−1) � IK−1 (aK−2 (b, JK−1) , bK−2 (b, JK−1) , cK−2 (b, JK−1))

(2.179)

IK−1 (c, JK−1) � IK−1 (aK−2 (c, JK−1) , bK−2 (c, JK−1) , cK−2 (c, JK−1))

(2.180)

Therefore, using calculations carries out during step K−1.1 the set of the three-
digital indices:

a (a, J1, J2, . . . , JK−1) b (a, J1, J2, . . . , JK−1) c (a, J1, J2, . . . , JK−1)

(2.181)

a (b, J1, J2, . . . , JK−1) b (b, J1, J2, . . . , JK−1) c (b, J1, J2, . . . , JK−1)

(2.182)
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a (c, J1, J2, . . . , JK−1) b (c, J1, J2, . . . , JK−1) c (c, J1, J2, . . . , JK−1) (2.183)

relatively the initial triangle ABC for all of the three vertices AK−1 (Eq. 2.181), BK−1

(Eq. 2.182), and CK−1 (Eq. 2.183) of each of the triangles AK−1BK−1CK−1 with the
serial indices JK−1 ∈ [

1, N 2
K−1

]
are known. For example, using Eq. 2.172 one can

find:

b (a, J1, J2, . . . , JK−1) � b (IK−1 (a, JK−1) , J1, J2 . . . , JK−2) . (2.184)

Step K .0. All steps K are carried out for each of the small triangles
AK−1BK−1CK−1 with the serial indices JK−1 ∈ [

1, N 2
K−1

]
.

Step K .1. For each of the small triangles AK−1BK−1CK−1 with the serial indices
JK−1 ∈ [

1, N 2
K−1

]
, the local indices of (NK+1)(NK+2)

2 reference points into the
small triangle AK−1BK−1CK−1 are known. For each of these (NK+1)(NK +2)

2 refer-
ence points with the three-digital indices aK−1bK−1cK−1 relative the small triangle
AK−1BK−1CK−1 with the serial index JK−1, one can calculate new three-digital
indices relatively the initial triangle ABC using Eqs. 2.185–2.187.

a (aK−1bK−1cK−1, J1, J2, . . . , JK−1) � aK−1a (a, J1, J2, . . . , JK−1)

+ bK−1a (b, J1, J2, . . . , JK−1)

+ cK−1a (c, J1, J2, . . . , JK−1) (2.185)

b (aK−1bK−1cK−1, J1, J2, . . . , JK−1) � aK−1b (a, J1, J2, . . . , JK−1)

+ bK−1b (b, J1, J2, . . . , JK−1)

+ cK−1b (c, J1, J2, . . . , JK−1) (2.186)

c (aK−1bK−1cK−1, , J1, J2, . . . , JK−1) � aK−1c (a, J1, J2, . . . , JK−1)

+ bK−1c (b, J1, J2, . . . , JK−1)

+ cK−1c (c, J1, J2, . . . , JK−1) (2.187)

Note that the algorithms on Steps 1 and K differ from the algorithm on steps 2,
3, …, K−1.

Therefore, if the local three-digital index aK−1bK−1cK−1 relative the triangle
AK−1BK−1CK−1 with the serial index JK−1 of the reference point under consid-
eration, and the set of the indices of the small triangles J1, J2, . . . , JK−1, Jk ∈ N 2

k ,
in which this reference point under consideration lies are known, one can find the
global three-digital index relative the initial triangle ABC using Eqs. 2.185–2.187.

Consider an example: K � 2, N1 � N2 � 2. The indices of the vertices of the
triangle with the index J1 � 2 are 110, 020, 011 relative the initial triangle. Thus, the
global index of the reference point with the local index 110 relative the small triangle
with the index J1 � 2 will be 130 and can be calculated using Eqs. 2.188–2.190.

a � 1 · 1 + 1 · 0 + 0 · 0 � 1 (2.188)

b � 1 · 1 + 1 · 2 + 0 · 1 � 3 (2.189)
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c � 1 · 0 + 1 · 0 + 0 · 1 � 0 (2.190)

2.4.3 Hybrid Parabolic Linear Interpolation

In this Section, a hybrid parabolic linear interpolation method is proposed. This
interpolation method combines the monotonicity of a piecewise-linear function in
some small triangles with the second order of the quadratic function in other small
triangles, where this does not lead to the formation of additional extremes that do
not coincide with the reference points. The resulting function ought to remain the
continuous, when passing from one triangle to another one. Such hybrid interpolation
provides the numerical methodwith the property ofmonotonicity and avoids the non-
physical oscillations of the solution.

The reference points 200, 020, 002, 110, 011, and 101 for the polynomial interpo-
lation of the second order are used. The algorithm for restoring a monotone function
in a grid triangle is as follows:

Step 1. Define the trial function using the normal polynomial interpolation of the
second order.

Step 2. Determine the values in the centers of the edges as follows. If the trial
function has not extremum on this edge, then take the value of the test function;
otherwise use the linear interpolation on the given edge. Therefore, if there are values
uA and uB into the vertices of the edge of the grid triangle and the value uAB in the
middle of this edge, then one can use the following inequalities. If uAB ∈ [uA, uB]
or uAB ∈ [uB, uA], then uNEWAB � uAB. In another case, uNEWAB � (uA + uB)

/
2.

This procedure should be performed for all the central-edge reference points 110,
011, and 101. If the central-edge reference point is 110, then the vertices of the edge
are 200 and 020. If the central-edge reference point is 011, then the vertices of the
edge are 020 and 002. If the central-edge reference point is 101, then the vertices of
the edge are 200 and 002.

Step 3. Determine the final value of the interpolant using the normal polynomial
interpolation of the second order with new values in the centers of the edges defined
on Step 2.

2.4.4 Interpolation Using Min–Max Limiter

Algorithm for constructing an interpolant with a limiter on triangular grids based on
interpolation by a polynomial of order N involves the following steps:

Step 1. The value of test function to the given point
⇀

r using the polynomial

interpolation of order N is determined. Let it be equal to uN

(
⇀

r
)
.

Step 2. The small triangle, in which the point
⇀

r falls, should be determined.
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Step 3. Then uN

(
⇀

r
)
should be compared with the minimum m and maximumM

values at the vertices of this small triangle, in which the point falls.

Step 3.1. If m ≤ uN

(
⇀

r
)

≤ M , then the value of interpolant at the point
⇀

r is

taking equal to uN

(
⇀

r
)
.

Step 3.2. If uN

(
⇀

r
)

< m, then the value of interpolant at the point
⇀

r is equal tom.

Step 3.3. If uN

(
⇀

r
)

> M , then the value of interpolant at the point
⇀

r is equal toM.

The use of interpolation with aMin-Max limiter makes it possible to eliminate the
non-physical oscillations of polynomials arising in the presence of discontinuities in
the interpolated functions.

2.4.5 Parabolic Interpolation on Reference Points
for Interpolation of Fourth Order

Consider a triangle ABC with the area S and 15 reference points 400, 040, 004, 310,
031, 103, 130, 013, 301, 220, 022, 202, 211, 121, and 112 into this triangle forN = 4.
One can divide this triangle ABC into 4 small triangles with areas S/4 using a set of
6 reference points in the Table 2.17 for N = 2.

One can use the algorithm discussed in Sect. 2.4.1 in order to understand, in which
of the 4 small triangles the point under consideration lies. Then one can apply the
formulae for the parabolic interpolation discussed inSect. 2.2.3 and use theTable 2.18
containing the congruence of three-digital indices for N = 4 and three-digital indices
for N = 2 for each of the 4 small triangles.

Table 2.17 Congruence of three-digital indices of reference points for N = 2 in order to divide the
initial triangle into 4 small triangles and initial three-digital indices for N = 4

Index to divide, N = 2 200 020 002 110 011 101

Initial index, N = 4 400 040 004 220 022 202

Table 2.18 Congruence of three-digital indices of reference points forN = 2 and initial three-digital
indices for N = 4 for each of the 4 small triangles

Small triangle No 200 020 002 110 011 101

1 400 220 202 310 211 301

2 220 040 022 130 031 121

3 202 022 004 112 013 103

4 022 202 220 112 211 121
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2.5 Conclusions

The analytical formulae for high-order interpolation techniques on the unstructured
triangular grids, such as the polynomial interpolation, piecewise linear interpola-
tion, hybrid parabolic linear interpolation, interpolation using Min-Max limiter, and
parabolic interpolation on reference points for interpolation of fourth order are sug-
gested in this chapter. The cases of order from 1 to 5 inclusively are considered.
These interpolation techniques can be used during creation a new unstructured tri-
angular or regular gird instead of previous one as an element of numerical method
for finding 2D solutions on the unstructured triangular meshes, as well as during
the visualization of some 2D field and images creation or transformation. Also, the
hierarchical nested unstructured triangular grids and formulae for recalculation from
local to global indices are discussed. This type of grids can be used also as an element
of numerical method on the unstructured triangular grids and for the visualization,
creation, and transformation of 2D images. These formulae for recalculation indices
are used to decrease the amount of calculation and software operation time. In this
chapter, one can find a vast amount of analytical expressions ready for use. These
analytical expressions and tables help to achieve huge numerical modelling results
in a case of the deficiency of hardware resources.
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Chapter 3
Interpolation on Unstructured
Tetrahedral Grids

Alena V. Favorskaya

Abstract Analytical expressions for polynomial interpolations of high-orders are
discussed in the chapter. Also in this Chapter several approaches for hybrid interpo-
lation are discussed. Using algorithms for the piecewise linear interpolation one can
obtain the hierarchical nested unstructured tetrahedral grids. The recurrent formulae
for recalculation of the local reference points’ indices to the global reference points’
indices are discussed in the chapter as well. An example of hybridization called
hybrid parabolic—linear interpolation is considered. Another example of hybridiza-
tion based on a limiter is considered as well. An example of approach based on
both hierarchical nested unstructured grids and hybridization called parabolic inter-
polation on the reference points for interpolation of fourth order is offered in the
chapter.
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3.1 Introduction

In this Chapter the interpolation on unstructured tetrahedral grids is discussed. The
main applications of the interpolation are discussed in Chap. 2. The main aspects
of using tetrahedral interpolation as an element of grid-characteristic method [1–10]
are discussed in Sect. 2.1 as well.

Due to the question of interpolation is very difficult there are a lot of recent
works in this area [11–16]. More detailed review of these works [11–16] is given
in Chap. 2. A family of conforming mixed finite elements for linear elasticity on
tetrahedral grids using Scott-Zhang interpolation operator is presented by Hu and
Zhang [17]. A novel consecutive-interpolation 4-node tetrahedral element for heat
transfer analysis was proposed by Nguyen et al. [18]. An interpolation operator on
unstructured tetrahedral meshes that satisfies the properties of mass conservation
was suggested by Alauzet [19]. A geometric representation of a tetrahedral mesh
that is solely based on dihedral angles was presented by Paille et al. [20]. Nikitin
et al. provide a description of numerical schemes with the use of adaptive moving
grids for nonstationary problems of fluid and gas mechanics and mechanics of a
deformable solid in the paper [21].

Tetrahedral grids are topologically qualitatively different from triangular ones.
For example, the Delaunay triangulation algorithm [22] does not work for them.
Therefore, the analytical expressions presented in this Chapter and Chap. 4 for inter-
polation on tetrahedral grids are so important.

Notice that in this Chapter only the case of scalar field u
(

⇀

r
)
is considered but

one can use the same expressions for vector field
⇀

u
(

⇀

r
)
if apply these expressions

to the components of this vector field u1
(

⇀

r
)

, u2
(

⇀

r
)

, u3
(

⇀

r
)

, u4
(

⇀

r
)

, . . . one by

one. Also notice that all formulae in this Chapter are true for tetrahedrons of arbitrary
shape despite on in all figures in this Chapter regular tetrahedrons are drawn. The
analogical formulae for triangles of arbitrary shapes are discussed in Chap. 2.

Chapter has the following structure. In Sect. 3.2, a polynomial interpolation on
the unstructured tetrahedral grids is presented. In Sect. 3.3, several approaches for
hybrid interpolation on the unstructured tetrahedral grids are discussed. Section 3.4
concludes the chapter.

3.2 Polynomial Interpolation

In this section, the analytical formulae for polynomial interpolation on the unstruc-
tured tetrahedral grids are considered. Using this type of interpolation, one can obtain
the continuous piecewise polynomial field and continuous differentiable in each
tetrahedron [1]. The method for obtaining these analytical formulae for any given
polynomial degree and list the analytical formulae for degrees from 1 to 5 inclusive
is considered.

https://doi.org/10.1007/978-3-319-76201-2_2
https://doi.org/10.1007/978-3-319-76201-2_2
https://doi.org/10.1007/978-3-319-76201-2_2
https://doi.org/10.1007/978-3-319-76201-2_4
https://doi.org/10.1007/978-3-319-76201-2_2
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In Sect. 3.2.1, one can find the description of a way to obtain the analytical
expression for the polynomial interpolation.One canfind these analytical expressions
for the polynomial interpolation on the tetrahedral grids with degree from 1 to 5
inclusively in Sects. 3.2.2, 3.2.3, 3.2.4, 3.2.5, and 3.2.6, respectively.

3.2.1 Obtaining the Analytical Formulae

In order to determine a polynomial field with degree N , which depends on x, y, and
z, the values at (N+1)(N+2)(N+3)

6 reference points should be known.
The following method of arranging reference points in the tetrahedron is sug-

gested. The planes parallel to the faces of the tetrahedron ABCD, which divide each
of its edges into N equal parts, are drawn within the tetrahedron. In Figs. 3.1, 3.2,
3.3, 3.4 and 3.5 one can see the faces of tetrahedron ABCD and lines obtained, when
the planes cross the corresponding face. On these faces, there are the numbered

reference points. These planes divide the tetrahedron into
N(N 2+2)

3 smaller tetrahe-
drons similar to it and N (N−1)(N+1)

6 octahedrons. The case of octahedron is discussed
circumstantially in Sect. 3.3.1.

The interpolation polynomials for finding some scalar field u
(

⇀

r
)
in the tetrahe-

dron can be written in the form of Eq. 3.1.

u
(

⇀

r
)

�
∑
i, j,k

ui jk x
i y j zk (3.1)

Note that values of the field in the reference points are known:

uabcd � u
(

⇀

r abcd
)

�
∑
i, j,k

ui jk x
i
abcd y

j
abcd z

k
abcd . (3.2)

One can write the solution of the system of linear Eq. 3.2 as Eq. 3.3.

Fig. 3.1 Reference points in
the tetrahedron for
polynomial interpolation
with order 1
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Fig. 3.2 Reference points in the tetrahedron for polynomial interpolation with order 2

Fig. 3.3 Reference points in the tetrahedron for polynomial interpolation with order 3
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Fig. 3.4 Reference points in the tetrahedron for polynomial interpolation with order 4

ui jk �
∑

a,b,c,d

ai jkabcduabcd (3.3)

Thus, one can determine the weights of the reference points wabcd

(
⇀

r
)
as follows:

wabcd

(
⇀

r
)

�
∑
i, j,k

ai jkabcd x
i y j zk (3.4)

and write the Eq. 3.1 in more applicable form:

u
(

⇀

r
)

�
∑

a,b,c,d

wabcd

(
⇀

r
)
uabcd . (3.5)
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Fig. 3.5 Reference points in the tetrahedron for polynomial interpolation with order 5

The field in the point R with radius-vector
⇀

r into the tetrahedron ABCD should
be found. Also, four tetrahedrons BCDR, CDAR, DABR, and ABCR are considered.
One can find volumes of these tetrahedrons using Eqs. 3.6–3.10.

VA � 1

6

(
(�r − �rC) · [

(�rD − �rC) , (�rB − �rC)
])

(3.6)

VB � 1

6

(
(�r − �rD) · [

(�rC − �rD) , (�rA − �rD)
])

(3.7)

VC � 1

6

(
(�r − �rB) · [

(�rD − �rB) , (�rA − �rB)
])

(3.8)

VD � 1

6

(
(�r − �rC) · [

(�rB − �rC) , (�rA − �rC)
])

(3.9)

V � 1

6

((
⇀

rC − ⇀

r D

)
·
[(

⇀

r A − ⇀

r D

)
,
(

⇀

r B − ⇀

r D

)])
(3.10)

One can find the relative volumes using Eq. 3.11, where T � A, B, C, D.
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vT
(

⇀

r
)

�
VT

(
⇀

r
)

V
(3.11)

The relative volumes have several properties. Their sum is equal to 1 (Eq. 3.12).

vA
(

⇀

r
)
+ vB

(
⇀

r
)
+ vC

(
⇀

r
)
+ vD

(
⇀

r
)

� 1 (3.12)

If the point R is one of the reference points with indices abcd, then for any b, any
c, and any d the following expression is true:

vA
(

⇀

r abcd
)

� a

N
, (3.13)

for any a, any c, and any d the following expression is true:

vB
(

⇀

r abcd
)

� b

N
, (3.14)

for any a, any b, and any d the following expression is true:

vC
(

⇀

r abcd
)

� c

N
, (3.15)

and for any a, any b, and any c the following expression is true:

vD
(

⇀

r abcd
)

� d

N
. (3.16)

The weights wabcd

(
⇀

r
)
of the reference points can be written by Eq. 3.17.

wabcd

(
⇀

r
)

�
∏N

i�1

(
vTi

(
⇀

r
)

− ni
N

)

∏N
i�1

(
vTi

(
⇀

r abcd
)

− ni
N

) (3.17)

In Eq. 3.17, letter-indices Ti � A, B, C, D and natural numbers ni should be
founded for the following expression to be true:

wabcd

(
⇀

r a′b′c′d ′
)

� δaa′δbb′δcc′δdd ′ . (3.18)

3.2.2 Weights of Reference Points for N = 1

Consider some example of finding the letter-indices and natural numbers in Eq. 3.17
for the case of N � 1. In this case, 4 reference points: 1000, 0100, 0010, and 0001
are. These points are represented in Fig. 3.1.
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Firstly the weight w1000

(
⇀

r
)
using Eq. 3.19 should be found.

w1000

(
⇀

r
)

�
vT1

(
⇀

r
)

− n1

vT1
(

⇀

r 1000
)

− n1
(3.19)

Let us consider
⇀

r � ⇀

r 0001:

0 �
vT1

(
⇀

r 0001
)

− n1

vT1
(

⇀

r 1000
)

− n1
�

vA
(

⇀

r 0001
)

− n1

vA
(

⇀

r 1000
)

− n1
� 0 − n1

1 − n1
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(3.20)

Thus, the weight in a view of Eq. 3.21 should be found.
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Similarly, one can find the weights w0100

(
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r
)
, w0010

(
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r
)
, and w0001

(
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)
using

Eqs. 3.22–3.24.

w0100

(
⇀

r
)

� vB
(

⇀

r
)

(3.22)

w0010

(
⇀

r
)

� sC
(

⇀

r
)

(3.23)

w0001

(
⇀

r
)

� sD
(

⇀

r
)

(3.24)

Thus, the formula for linear interpolation in the tetrahedron can be written in the
form of Eq. 3.25.
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3.2.3 Weights of Reference Points for N = 2

In the case of parabolic interpolation, when N � 2, the weights of reference points
represented in Fig. 3.2 one can find using Eqs. 3.26–3.35.
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3.2.4 Weights of Reference Points for N = 3

In the case of N � 3, the weights of reference points represented in Fig. 3.3 can be
defined using Eqs. 3.36–3.55.
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3.2.5 Weights of Reference Points for N = 4

In the case of N � 4, the weights of reference points represented in Fig. 3.4 are
determined using Eqs. 3.56–3.90.
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Note that the reference point 1111 is not drawn in Fig. 3.4 because this reference
point does not lie on any of the faces of the tetrahedron ABCD.

3.2.6 Weights of Reference Points for N = 5

In the case of N � 5, the weights of reference points represented in Fig. 3.5 are
computed using Eqs. 3.91–3.146.
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Note that the reference points 2111, 1211, 1121, and 1112 are not drawn in Fig. 3.5
because these reference points do not lie on any of the faces of the tetrahedronABCD.

3.3 Several Approaches for Hybrid Interpolation

Consider several approaches for hybrid interpolation on the unstructured tetrahedral
grids [1]. Using algorithms for the piecewise linear interpolation discussed in Chap.
4, one can obtain the hierarchical nested unstructured tetrahedral grids described
in Sect. 3.3.1. In Sect. 3.3.2, the recurrent formulae for recalculation of the local
reference points’ indices to the global reference points’ indices are discussed. In
Sect. 3.3.3, an example of hybridization called hybrid parabolic—linear interpolation
is considered. In Sect. 3.3.4, another example of hybridization based a limiter is
discussed. In Sect. 3.3.5, an example of approach based on both hierarchical nested

https://doi.org/10.1007/978-3-319-76201-2_4
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unstructured grids and hybridization called parabolic interpolation on the reference
points for interpolation of fourth order is offered.

3.3.1 Hierarchical Nested Unstructured Tetrahedral Grids

Using algorithms for the piecewise linear interpolation discussed in Sect. 3.3, one
can obtain hybrid hierarchical unstructured grids. The use of these types of grids
allows to avoid spending resources like execution time of software during building
the detailed unstructured tetrahedral grid. This result is achieved due to the analytical
expressions given in Chap. 4 and allows to understand, in which tetrahedron the point
under consideration lies without using the search algorithms.

One can use the hierarchical nested unstructured tetrahedral grids applying the
following algorithm for the point under consideration

⇀

r :

Step 0 Firstly, the relative volumes vA
(

⇀

r
)
, vB

(
⇀

r
)
, vC

(
⇀

r
)
, and vD

(
⇀

r
)
correspond-

ing the big tetrahedronABCD should be calculated usingEqs. 3.6–3.11 given
in Sect. 3.2.1.

Step 1 For the first level of hybridization with N1 using algorithms discussed in
Chap. 4, one can find the reference points associated with the big tetrahedron
ABCD forming the small tetrahedronA1B1C1D1 and calculate corresponding
relative volumes vA,1 (vA), vB,1 (vB), vC,1 (vC), and vD,1 (vD).

Step 2 For the second level of hybridization with N2 using algorithms discussed
in Chap. 4, one can find the reference points associated with the tetra-
hedron A1B1C1D1 forming the small tetrahedron A2B2C2D2 and calcu-
late corresponding relative volumes vA,2

(
vA,1

)
, vB,2

(
vB,1

)
, vC,2

(
vC,1

)
, and

vD,2
(
vD,1

)
.

Step 3 For the third level of hybridization with N3 using algorithms discussed
in Chap. 4, one can find the reference points associated with the tetra-
hedron A2B2C2D2 forming the small tetrahedron A3B3C3D3 and calcu-
late corresponding relative volumes vA,3

(
vA,2

)
, vB,3

(
vB,2

)
, vC,3

(
vC,2

)
, and

vD,3
(
vD,2

)
.

Step k For the k level of hybridization with Nk using algorithms discussed in
Chap. 4, one can find the reference points associated with the tetrahedron
Ak−1Bk−1Ck−1Dk−1 forming the small tetrahedron Ak BkCkDk and calculate
corresponding relative volumes vA,k

(
vA,k−1

)
, vB,k

(
vB,k−1

)
, vC,k

(
vC,k−1

)
,

and vD,k
(
vD,k−1

)
.

Note that one can find coordinates of the reference point abcd associated with the
tetrahedron ABCD using Eq. 3.147.

⇀

r abcd � a

N

(
⇀

r A − ⇀

r D

)
+

b

N

(
⇀

r B − ⇀

r D

)
+

c

N

(
⇀

rC − ⇀

r D

)
+

⇀

r D (3.147)

https://doi.org/10.1007/978-3-319-76201-2_4
https://doi.org/10.1007/978-3-319-76201-2_4
https://doi.org/10.1007/978-3-319-76201-2_4
https://doi.org/10.1007/978-3-319-76201-2_4
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3.3.2 Formulae for Recalculation from Local to Global
Indices

In order to diminish the amount of calculations, the values of radius-vectors corre-
sponding to the reference point into the big tetrahedron ABCD in the hierarchical
nested unstructured tetrahedral grid are defined using the recurrent formulae for
recalculation from local reference points’ indices to global reference points’ indices.
One can use these recurrent formulae before calculations and save the non-recurrent
formulae for recalculation from local to global reference points’ indices as a table
and then use Eq. 3.149 with global four-digital index abcd and N � N1N2 . . . NK .

There are (N+1)(N+2)(N+3)
6 reference points into the tetrahedron if the appropriate

order is equal to N . One can determine the rule for recalculation from serial refer-

ence points’ index I ∈
[
1, (N+1)(N+2)(N+3)

6

]
into four-digital index abcd introduced

in Sect. 3.2 (Eq. 3.148) and vice versa (Eq. 3.149).

I ∈
[
1,

(N + 1) (N + 2) (N + 3)

6

]
|→ {a (I ) , b (I ) , c (I ) , d (I )}

{a ∈ [0, N ] , b ∈ [0, N ] , c ∈ [0, N ] , d ∈ [0, N ] , (3.148)

a + b + c + d � N } |→ I (a, b, c, d) (3.149)

The steps of this algorithm are mentioned below.

Step 1 N 3
1 small tetrahedrons A1B1C1D1 with the serial indices J1 ∈ [

1, N 3
1

]
are

known into the initial tetrahedron ABCD. The set of the four-digital indices:

a (a, J1) b (a, J1) c (a, J1) d (a, J1) (3.150)

a (b, J1) b (b, J1) c (b, J1) c (b, J1) (3.151)

a (c, J1) b (c, J1) c (c, J1) d (c, J1) (3.152)

a (d, J1) b (d, J1) c (d, J1) d (d, J1) (3.153)

relatively the initial tetrahedron ABCD for all of the four vertices A1 (Eq. 3.150),
B1 (Eq. (3.151), C1 (Eq. 3.152), and D1 (Eq. 3.153) of each of the tetrahedrons
A1B1C1D1 with the serial indices J1 ∈ [

1, N 3
1

]
are known and represented into the

tables of the third, fifth, and sixth types in Chap. 4.

Step 2.0 All steps starting with 2 are carried out for each of the small tetrahedrons
A1B1C1D1 with the serial indices J1 ∈ [

1, N 3
1

]
.

Step 2.1 For each of the small tetrahedrons A1B1C1D1 with the serial indices J1 ∈[
1, N 3

1

]
, the local indices of (N2+1)(N2+2)(N2+3)

6 reference points into the
small tetrahedron A1B1C1D1 are known. For each of these reference points

with the serial indices I2 ∈
[
1, (N2+1)(N2+2)(N2+3)

6

]
, one can calculate the

four-digital indices a1 (I2), b1 (I2), c1 (I2), and d1 (I2) relatively the small

https://doi.org/10.1007/978-3-319-76201-2_4
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tetrahedron A1B1C1D1 with the serial index J1 ∈ [
1, N 3

1

]
using Eq. 3.148

for N2.
Thus, for each of these (N2+1)(N2+2)(N2+3)

6 reference points with the serial
indices I2, one can calculate new four-digital indices relatively the initial
tetrahedron ABCD using Eqs. 1.154–1.157.

a (I2, J1) � a1 (I2) a (a, J1) + b1 (I2) a (b, J1)+

+ c1 (I2) a (c, J1) + d1 (I2) a (d, J1) (3.154)

b (I2, J1) � a1 (I2) b (a, J1) + b1 (I2) b (b, J1)+

+ c1 (I2) b (c, J1) + d1 (I2) b (d, J1) (3.155)

c (I2, J1) � a1 (I2) c (a, J1) + b1 (I2) c (b, J1)+

+ c1 (I2) c (c, J1) + d1 (I2) c (d, J1) (3.156)

d (I2, J1) � a1 (I2) d (a, J1) + b1 (I2) d (b, J1)+

+ c1 (I2) d (c, J1) + d1 (I2) d (d, J1) (3.157)

Step 2.2 Into each of the small tetrahedrons A1B1C1D1 with the serial
indices J1 ∈ [

1, N 3
1

]
, N 3

2 small tetrahedrons A2B2C2D2 with the serial
indices J2 ∈ [

1, N 3
2

]
are known.

The set of the four digital indices:

a1 (a, J2) b1 (a, J2) b1 (a, J2) d1 (a, J2) (3.158)

a1 (b, J2) b1 (b, J2) b1 (b, J2) d1 (b, J2) (3.159)

a1 (c, J2) b1 (c, J2) c1 (c, J2) d1 (c, J2) (3.160)

a1 (d, J2) b1 (d, J2) c1 (d, J2) d1 (d, J2) (3.161)

relatively the small tetrahedron A1B1C1D1 with the serial index J1 ∈ [
1, N 3

1

]
for

all of the four vertices A2 (Eq. 3.158), B2 (Eq. 3.159), C2 (Eq. 3.160), and D2

(Eq. 3.161) of each of the tetrahedrons A2B2C2D2 with the serial indices J2 ∈[
1, N 3

2

]
independent on J1 are known and represented into the tables of the third,

fifth, and sixth types in Chap. 4.

Thus, one can find the set of the serial indices I2 ∈
[
1, (N2+1)(N2+2)(N2+3)

6

]
for all of

the four vertices A2 (Eq. 3.162), B2 (Eq. 3.163), C2 (Eq. 3.164), and D2 (Eq. 3.165)
of each of the tetrahedrons A2B2C2D2 with the serial indices J2 ∈ [

1, N 3
2

]
using

equation (Eq. 3.149) for N2.

I2 (a, J2) � I2 (a1 (a, J2) , b1 (a, J2) , c1 (a, J2) , d1 (a, J2)) (3.162)

I2 (b, J2) � I2 (a1 (b, J2) , b1 (b, J2) , c1 (b, J2) , d1 (b, J2)) (3.163)

I2 (c, J2) � I2 (a1 (c, J2) , b1 (c, J2) , c1 (c, J2) , d1 (c, J2)) (3.164)

I2 (d, J2) � I2 (a1 (d, J2) , b1 (d, J2) , c1 (d, J2) , d1 (d, J2)) (3.165)

https://doi.org/10.1007/978-3-319-76201-2_1
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Therefore, using calculations carries out during Step 2.1 the set of the four-digital
indices:

a (a, J1, J2) b (a, J1, J2) c (a, J1, J2) d (a, J1, J2) (3.166)

a (b, J1, J2) b (b, J1, J2) c (b, J1, J2) d (b, J1, J2) (3.167)

a (c, J1, J2) b (c, J1, J2) c (c, J1, J2) d (c, J1, J2) (3.168)

a (d, J1, J2) b (d, J1, J2) c (d, J1, J2) d (d, J1, J2) (3.169)

relatively the initial tetrahedron ABCD for all of the four vertices A2 (Eq. 3.166), B2

(Eq. 3.167), C2 (Eq. 3.168), and (Eq. 3.169) of each of the tetrahedrons A2B2C2D2

with the serial indices J2 ∈ [
1, N 3

2

]
are known. For example, using Eq. 3.162 one

can find:

b (a, J1, J2) � b (I2 (a, J2) , J1) . (3.170)

Step 3.0 All steps starting with Step 3 are carried out for each of the small tetrahe-
drons A2B2C2D2 with the serial indices J2 ∈ [

1, N 3
2

]
.

Step 3.1 For each of the small tetrahedrons A2B2C2D2 with the serial indices J2 ∈[
1, N 3

2

]
, the local indices of (N3+1)(N3+2)(N3+3)

6 reference points into the
small tetrahedron A2B2C2D2 are known. For each of these reference points

with the serial indices I3 ∈
[
1, (N3+1)(N3+2)(N3+3)

6

]
, one can calculate the

four-digital indices a2 (I3), b2 (I3), c2 (I3), and d2 (I3) relatively the small
tetrahedron A2B2C2D2 with the serial index J2 ∈ [

1, N 3
2

]
using Eq. 3.148

for N3.
Thus, for each of these (N3+1)(N3+2)(N3+3)

6 reference points with the serial
indices I3, one can calculate new four-digital indices relatively the initial
tetrahedron ABCD using Eqs. 3.171–3.174.

a (I3, J1, J2) � a2 (I3) a (a, J1, J2) + b2 (I3) a (b, J1, J2)+

+ c2 (I3) a (c, J1, J2) + d2 (I3) a (d, J1, J2) (3.171)

b (I3, J1, J2) � a2 (I3) b (a, J1, J2) + b2 (I3) b (b, J1, J2)+

+ c2 (I3) b (c, J1, J2) + d2 (I3) b (d, J1, J2) (3.172)

c (I3, J1, J2) � a2 (I3) c (a, J1, J2) + b2 (I3) c (b, J1, J2)+

+ c2 (I3) c (c, J1, J2) + d2 (I3) c (d, J1, J2) (3.173)

d (I3, J1, J2) � a2 (I3) d (a, J1, J2) + b2 (I3) d (b, J1, J2)+

+ c2 (I3) d (c, J1, J2) + d2 (I3) d (d, J1, J2) (3.174)

Step 3.2 Into each of the small tetrahedrons A2B2C2D2 with the serial indices J2 ∈[
1, N 3

2

]
, N 3

3 small tetrahedrons A3B3C3D3 with the serial indices J3 ∈[
1, N 3

3

]
are known.



3 Interpolation on Unstructured Tetrahedral Grids 63

The set of the four-digital indices:

a2 (a, J3) b2 (a, J3) c2 (a, J3) d2 (a, J3) (3.175)

a2 (b, J3) b2 (b, J3) c2 (b, J3) d2 (b, J3) (3.176)

a2 (c, J3) b2 (c, J3) c2 (c, J3) d2 (c, J3) (3.177)

a2 (d, J3) b2 (d, J3) c2 (d, J3) d2 (d, J3) (3.178)

relatively the small tetrahedron A2B2C2D2 with the serial index J2 ∈ [
1, N 3

2

]
for

all of the four vertices A3 (Eq. 3.175), B3 (Eq. 3.176), C3 (Eq. 3.177), and D3

(Eq. 3.178) of each of the tetrahedrons A3B3C3D3 with the serial indices J3 ∈[
1, N 3

3

]
independent on J1, J2 are known and represented into the tables of the third,

fifth, and sixth types in Chap. 4.

Thus, one can find the set of the serial indices I3 ∈
[
1, (N3+1)(N3+2)(N3+3)

6

]
for all of

the four vertices A3 (Eq. 3.179), B3 (Eq. 3.180), C3 (Eq. 3.181), and D3 (Eq. 3.182)
of each of the tetrahedrons A3B3C3D3 with the serial indices J3 ∈ [

1, N 3
3

]
using

Eq. 3.149 for N3.

I3 (a, J3) � I3 (a2 (a, J3) , b2 (a, J3) , c2 (a, J3) , d2 (a, J3)) (3.179)

I3 (b, J3) � I3 (a2 (b, J3) , b2 (b, J3) , c2 (b, J3) , d2 (b, J3)) (3.180)

I3 (c, J3) � I3 (a2 (c, J3) , b2 (c, J3) , c2 (c, J3) , d2 (c, J3)) (3.181)

I3 (d, J3) � I3 (a2 (d, J3) , b2 (d, J3) , c2 (d, J3) , d2 (d, J3)) (3.182)

Therefore, using calculations carries out during Step 3.1 the set of the four-digital
indices:

a (a, J1, J2, J3) b (a, J1, J2, J3) c (a, J1, J2, J3) d (a, J1, J2, J3) (3.183)

a (b, J1, J2, J3) b (b, J1, J2, J3) c (b, J1, J2, J3) d (b, J1, J2, J3) (3.184)

a (c, J1, J2, J3) b (c, J1, J2, J3) c (c, J1, J2, J3) d (c, J1, J2, J3) (3.185)

a (d, J1, J2, J3) b (d, J1, J2, J3) c (d, J1, J2, J3) d (d, J1, J2, J3) (3.186)

relatively the initial tetrahedron ABCD for all of the four vertices A3 (Eq. 3.183),
B3 (Eq. 3.184), C3 (Eq. 3.185), and D3 (Eq. 3.186) of each of the tetrahedrons
A3B3C3D3 with the serial indices J3 ∈ [

1, N 3
3

]
are known. For example, using

Eq. 3.171 one can find:

b (a, J1, J2, J3) � b (I3 (a, J3) , J1, J2) . (3.187)

Step k.0 All steps starting with Step k are carried out for each of the small tetrahe-
drons Ak−1Bk−1Ck−1Dk−1 with the serial indices Jk−1 ∈ [

1, N 3
k−1

]
.
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Step k.1 For each of the small tetrahedrons Ak−1Bk−1Ck−1Dk−1 with the serial
indices Jk−1 ∈ [

1, N 3
k−1

]
, the local indices of (Nk+1)(Nk+2)(Nk+3)

6 reference
points into the small tetrahedron Ak−1Bk−1Ck−1Dk−1 are known.

For each of these reference points with the serial indices Ik ∈[
1, (Nk+1)(Nk+2)(Nk+3)

6

]
, one can calculate the four-digital indices ak−1 (Ik), bk−1 (Ik),

ck−1 (Ik), and dk−1 (Ik) relatively the small tetrahedron Ak−1Bk−1Ck−1Dk−1 with the
serial index Jk−1 ∈ [

1, N 3
k−1

]
using Eq. 3.148 for Nk .

Thus, for each of these (Nk+1)(Nk+2)(Nk+3)
6 reference points with the serial indices

Ik one can calculate new four-digital indices relatively the initial tetrahedron ABCD
using Eqs. 3.188–3.191.

a (Ik , J1, . . . , Jk−1) � ak−1 (Ik) a (a, J1, . . . , Jk−1) + bk−1 (Ik) a (b, J1, . . . , Jk−1)+

+ ck−1 (Ik) a (c, J1, . . . , Jk−1) + dk−1 (Ik) a (d, J1, . . . , Jk−1) (3.188)

b (Ik , J1, . . . , Jk−1) � ak−1 (Ik) b (a, J1, . . . , Jk−1) + bk−1 (Ik) b (b, J1, . . . , Jk−1)+

+ ck−1 (Ik) b (c, J1, . . . , Jk−1) + dk−1 (Ik) b (d, J1, . . . , Jk−1) (3.189)

c (Ik , J1, . . . , Jk−1) � ak−1 (Ik) c (a, J1, . . . , Jk−1) + bk−1 (Ik) c (b, J1, . . . , Jk−1)+

+ ck−1 (Ik) c (c, J1, . . . , Jk−1) + dk−1 (Ik) c (d, J1, . . . , Jk−1) (3.190)

d (Ik , J1, . . . , Jk−1) � ak−1 (Ik) d (a, J1, . . . , Jk−1) + bk−1 (Ik) d (b, J1, . . . , Jk−1)+

+ ck−1 (Ik) d (c, J1, . . . , Jk−1) + dk−1 (Ik) d (d, J1, . . . , Jk−1) (3.191)

Step k.2 Into each of the small tetrahedrons Ak−1Bk−1Ck−1Dk−1 with the serial
indices Jk−1 ∈ [

1, N 3
k−1

]
, N 3

k small tetrahedrons Ak BkCkDk with the
serial indices Jk ∈ [

1, N 3
k

]
are known. The set of the four-digital indices:

ak−1 (a, Jk) bk−1 (a, Jk) ck−1 (a, Jk) dk−1 (a, Jk) (3.192)

ak−1 (b, Jk) bk−1 (b, Jk) ck−1 (b, Jk) dk−1 (b, Jk) (3.193)

ak−1 (c, Jk) bk−1 (c, Jk) ck−1 (c, Jk) dk−1 (c, Jk) (3.194)

ak−1 (d, Jk) bk−1 (d, Jk) ck−1 (d, Jk) dk−1 (d, Jk) (3.195)

relatively the small tetrahedron Ak−1Bk−1Ck−1Dk−1 with the serial index Jk−1 ∈[
1, N 3

k−1

]
for all of the four vertices Ak (Eq. 3.192), Bk (Eq. 3.193), Ck (Eq. 3.194),

and Dk (Eq. 3.195) of each of the tetrahedrons Ak BkCkDk with the serial indices
Jk ∈ [

1, N 3
k

]
independent on J1, J2, . . . , Jk−1 are known and represented into the

tables of the third, fifth, and sixth types in Chap. 4.

Thus, one can find the set of the serial indices Ik ∈
[
1, (Nk+1)(Nk+2)(Nk+3)

6

]
for all of

the four vertices Ak (Eq. 3.196), Bk (Eq. 3.197), Ck (Eq. 3.198), and Dk (Eq. 3.199)
of each of the tetrahedrons Ak BkCkDk with the serial indices Jk ∈ [

1, N 3
k

]
using

Eq. 3.148 for Nk .

Ik (a, Jk) � Ik (ak−1 (a, Jk) , bk−1 (a, Jk) , ck−1 (a, Jk) , dk−1 (a, Jk)) (3.196)

Ik (b, Jk) � Ik (ak−1 (b, Jk) , bk−1 (b, Jk) , ck−1 (b, Jk) , dk−1 (b, Jk)) (3.197)
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Ik (c, Jk) � Ik (ak−1 (c, Jk) , bk−1 (c, Jk) , ck−1 (c, Jk) , dk−1 (c, Jk)) (3.198)

Ik (d, Jk) � Ik (ak−1 (d, Jk) , bk−1 (d, Jk) , ck−1 (d, Jk) , dk−1 (d, Jk)) (3.199)

Therefore, using calculations carries out during Step k.1 the set of the four-digital
indices:

a (a, J1, . . . , Jk) b (a, J1, . . . , Jk) c (a, J1, . . . , Jk) d (a, J1, . . . , Jk) (3.200)

a (b, J1, . . . , Jk) b (b, J1, . . . , Jk) c (b, J1, . . . , Jk) d (b, J1, . . . , Jk) (3.201)

a (c, J1, . . . , Jk) b (c, J1, . . . , Jk) c (c, J1, . . . , Jk) d (c, J1, . . . , Jk) (3.202)

a (d, J1, . . . , Jk) b (d, J1, . . . , Jk) c (d, J1, . . . , Jk) d (d, J1, . . . , Jk) (3.203)

relatively the initial tetrahedron ABCD for all of the four vertices Ak (Eq. 3.200),
Bk (Eq. 3.201), Ck (Eq. 3.202), and Dk (Eq. 3.203) of each of the tetrahedrons
Ak BkCkDk with the serial indices Jk ∈ [

1, N 3
k

]
are known. For example, using

Eq. 3.188 one can find:

b (a, J1, J2, . . . , Jk) � b (Ik (a, Jk) , J1, J2 . . . , Jk−1) . (3.204)

Step K−1.0 All steps starting with Step K−1 are carried out for each of the small
tetrahedrons AK−2BK−2CK−2DK−2 with the serial indices JK−2 ∈[
1, N 3

K−2

]
.

Step K−1.1 For each of the small tetrahedrons AK−2BK−2CK−2DK−2 with
the serial indices JK−2 ∈ [

1, N 3
K−2

]
, the local indices of

(NK−1+1)(NK−1+2)(NK−1+3)
6 reference points into the small tetrahedron

AK−2BK−2CK−2DK−2 are known. For each of these reference points

with the serial indices IK−1 ∈
[
1, (NK−1+1)(NK−1+2)(NK−1+3)

6

]
, one

can calculate the four-digital indices aK−2 (IK−1), bK−2 (IK−1),
cK−2 (IK−1), and dK−2 (IK−1) relatively the small tetrahedron
AK−2BK−2CK−2DK−2 with the index JK−2 ∈ [

1, N 3
K−2

]
using

Eq. 3.148 for NK−1.

Thus, for each of these (NK−1+1)(NK−1+2)(NK−1+3)
6 reference points with the serial

indices IK−1 one can calculate new four-digital indices relatively the initial tetrahe-
dron ABCD using Eqs. 3.205–3.208.

a (IK−1, J1, . . . , JK−2) � aK−2 (IK−1) a (a, J1, . . . , JK−2)

+ bK−2 (IK−1) a (b, J1, . . . , JK−2)

+ cK−2 (IK−1) a (c, J1, . . . , JK−2)

+ dK−2 (IK−1) a (d, J1, . . . , JK−2) (3.205)
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b (IK−1, J1, . . . , JK−2) � aK−2 (IK−1) b (a, J1, . . . , JK−2)

+ bK−2 (IK−1) b (b, J1, . . . , JK−2)

+ cK−2 (IK−1) b (c, J1, . . . , JK−2)

+ dK−2 (IK−1) b (d, J1, . . . , JK−2) (3.206)

c (IK−1, J1, . . . , JK−2) � aK−2 (IK−1) c (a, J1, . . . , JK−2)

+ bK−2 (IK−1) c (b, J1, . . . , JK−2)

+ cK−2 (IK−1) c (c, J1, . . . , JK−2)

+ dK−2 (IK−1) c (d, J1, . . . , JK−2) (3.207)

d (IK−1, J1, . . . , JK−2) � aK−2 (IK−1) d (a, J1, . . . , JK−2)

+ bK−2 (IK−1) d (b, J1, . . . , JK−2)

+ cK−2 (IK−1) d (c, J1, . . . , JK−2)

+ dK−2 (IK−1) d (d, J1, . . . , JK−2) (3.208)

Step K−1.2 Into each of the small tetrahedrons AK−2BK−2CK−2DK−2 with
the serial indices JK−2 ∈ [

1, N 3
K−2

]
, N 3

K−1 small tetrahedrons
AK−1BK−1CK−1DK−1 with the serial indices JK−1 ∈ [

1, N 3
K−1

]
are

known. The set of the four-digital indices:

aK−2 (a, JK−1) bK−2 (a, JK−1) cK−2 (a, JK−1) dK−2 (a, JK−1) (3.209)

aK−2 (b, JK−1) bK−2 (b, JK−1) cK−2 (b, JK−1) dK−2 (b, JK−1) (3.210)

aK−2 (c, JK−1) bK−2 (c, JK−1) cK−2 (c, JK−1) dK−2 (c, JK−1) (3.211)

aK−2 (d, JK−1) bK−2 (d, JK−1) cK−2 (d, JK−1) dK−2 (d, JK−1) (3.212)

relatively the small tetrahedron AK−2BK−2CK−2DK−2 with the serial index JK−2 ∈[
1, N 3

K−2

]
for all of the four vertices AK−1 (Eq. 3.209), BK−1 (Eq. 3.210), CK−1

(Eq. 3.211), and DK−1 (Eq. 3.212) of each of the tetrahedrons AK−1BK−1CK−1DK−1

with the serial indices JK−1 ∈ [
1, N 3

K−1

]
independent on J1, J2,…, JK−2 are known

and represented into the tables of the third, fifth, and sixth types in Chap. 4.

Thus, one can find the set of the serial indices IK−1 ∈
[
1, (NK−1+1)(NK−1+2)(NK−1+3)

6

]

for all of the four vertices AK−1 (Eq. 3.213), BK−1 (Eq. 3.214), CK−1 (Eq. 3.215),
and DK−1 (Eq. 3.216) of each of the tetrahedrons AK−1BK−1CK−1DK−1 with the
serial indices JK−1 ∈ [

1, N 3
K−1

]
using Eq. 3.148 for NK−1.

IK−1 (a, JK−1) � IK−1 (aK−2 (a, JK−1) , bK−2 (a, JK−1) ,

cK−2 (a, JK−1) , dK−2 (a, JK−1)) (3.213)

IK−1 (b, JK−1) � IK−1 (aK−2 (b, JK−1) , bK−2 (b, JK−1) ,

cK−2 (b, JK−1) , dK−2 (b, JK−1)) (3.214)
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IK−1 (c, JK−1) � IK−1 (aK−2 (c, JK−1) , bK−2 (c, JK−1) ,

cK−2 (c, JK−1) , dK−2 (c, JK−1)) (3.215)

IK−1 (c, JK−1) � IK−1 (aK−2 (d, JK−1) , bK−2 (d, JK−1) ,

cK−2 (d, JK−1) , dK−2 (d, JK−1)) (3.216)

Therefore, using calculations carries out during Step K−1.1 the set of the four-
digital indices:

a (a, J1, . . . , JK−1) b (a, J1, . . . , JK−1) c (a, J1, . . . , JK−1) d (a, J1, . . . , JK−1)

(3.217)

a (b, J1, . . . , JK−1) b (b, J1, . . . , JK−1) c (b, J1, . . . , JK−1) d (b, J1, . . . , JK−1)

(3.218)

a (c, J1, . . . , JK−1) b (c, J1, . . . , JK−1) c (c, J1, . . . , JK−1) d (c, J1, . . . , JK−1)

(3.219)

a (d, J1, . . . , JK−1) b (d, J1, . . . , JK−1) c (d, J1, . . . , JK−1) d (d, J1, . . . , JK−1)

(3.220)

relatively the initial tetrahedron ABCD for all of the four vertices AK−1 (Eq. 3.217),
BK−1 (Eq. 3.218),CK−1 (Eq. 3.219), and DK−1 (Eq. 3.220) of eachof the tetrahedrons
AK−1BK−1CK−1DK−1 with the serial indices JK−1 ∈ [

1, N 3
K−1

]
are known. For

example, using Eq. 3.205 one can find:

b (a, J1, J2, . . . , JK−1) � b (IK−1 (a, JK−1) , J1, J2 . . . , JK−2) . (3.221)

Step K.0 All Steps K are carried out for each of the small tetrahedrons
AK−1BK−1CK−1DK−1 with the serial indices JK−1 ∈ [

1, N 3
K−1

]
.

Step K.1 For each of the small tetrahedrons AK−1BK−1CK−1DK−1 with the serial
indices JK−1 ∈ [

1, N 3
K−1

]
, the local indices of (NK+1)(NK+2)(NK+3)

6
reference points into the small tetrahedron AK−1BK−1CK−1DK−1 are
known. For each of these (NK+1)(NK+2)(NK+3)

6 reference points with the
four-digital indices aK−1bK−1cK−1dK−1 relative the small tetrahedron
AK−1BK−1CK−1DK−1 with the serial index JK−1, one can calculate
new four-digital indices relatively the initial tetrahedron ABCD using
Eqs. 3.222–3.225.

a (aK−1bK−1cK−1, J1, . . . , JK−1) � aK−1a (a, J1, . . . , JK−1)

+ bK−1a (b, J1, . . . , JK−1)

+ cK−1a (c, J1, . . . , JK−1)

+ dK−1a (d, J1, . . . , JK−1) (3.222)
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b (aK−1bK−1cK−1, J1, . . . , JK−1) � aK−1b (a, J1, . . . , JK−1)

+ bK−1b (b, J1, . . . , JK−1)

+ cK−1b (c, J1, . . . , JK−1)

+ dK−1b (d, J1, . . . , JK−1) (3.223)

c (aK−1bK−1cK−1, J1, . . . , JK−1) � aK−1c (a, J1, . . . , JK−1)

+ bK−1c (b, J1, . . . , JK−1)

+ cK−1c (c, J1, . . . , JK−1)

+ dK−1c (d, J1, . . . , JK−1) (3.224)

d (aK−1bK−1cK−1, J1, . . . , JK−1) � aK−1d (a, J1, . . . , JK−1)

+ bK−1d (b, J1, . . . , JK−1)

+ cK−1d (c, J1, . . . , JK−1)

+ dK−1d (d, J1, . . . , JK−1) (3.225)

Note that the algorithms on Steps 1 and K differ from the algorithm on Steps
2, 3, . . . , K − 1.

Therefore, if the local four-digital index aK−1bK−1cK−1dK−1 relative the tetrahe-
dron AK−1BK−1CK−1DK−1 with the serial index JK−1 of the reference point under
consideration and the set of the indices of the small tetrahedron J1, J2, . . . , JK−1,
Jk ∈ N 3

k , in which this reference point under consideration lies are known, one
can find the global four-digital index relative the initial tetrahedron ABCD using
Eqs. 3.222–3.225.

Consider an example: K � 2, N1 � N2 � 2. The indices of the vertices of
the tetrahedron with the index J1 � 2 are 1100, 0200, 0110, and 0101 relative the
initial tetrahedron. Thus, the global index of the reference point with the local index
1100 relative the small tetrahedron with the index J1 � 2 will be 1300 and can be
calculated using Eqs. 3.226–3.229.

a � 1 · 1 + 1 · 0 + 0 · 0 + 0 · 0 � 1 (3.226)

b � 1 · 1 + 1 · 2 + 0 · 1 + 0 · 1 � 3 (3.227)

c � 1 · 0 + 1 · 0 + 0 · 1 + 0 · 0 � 0 (3.228)

d � 1 · 0 + 1 · 0 + 0 · 0 + 0 · 1 � 0 (3.229)

3.3.3 Hybrid Parabolic Linear Interpolation

In this Section, a hybrid parabolic linear interpolationmethod is proposed. This inter-
polation method combines the monotonicity of a piecewise-linear function in some
small tetrahedrons with the second order of the quadratic function in other small
tetrahedrons, where this does not lead to the formation of additional extrema that
do not coincide with the reference points. The resulting function ought to remain
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continuous, when passing from one tetrahedron to another one. Such hybrid interpo-
lation provides the numerical method with the property of monotonicity and avoids
the non-physical oscillations of the solution.

The reference points 2000, 0200, 0020, 0002, 1100, 0110, 0011, 1001, 1010, and
0101 for the polynomial interpolation of the second order are used. The algorithm
for restoring a monotone function in a grid tetrahedron is as follows:

Step 1 Define the trial function using the normal polynomial interpolation of the
second order.

Step 2 Determine the values in the centers of the edges as follows. If the trial
function has not extremum on this edge, then take the value of the test
function; otherwise use a linear interpolation on the given edge. Therefore, if
there are values uA and uB into the vertices of the edge of the grid tetrahedron
and the value uAB in the middle of this edge, then one can use the following
inequalities. If uAB ∈ [uA, uB] or uAB ∈ [uB, uA], then uNEWAB � uAB. In
another case, uNEWAB � (uA + uB)/2.
This procedure should be performed for all the central-edge reference points
1100, 0110, 0011, 1001, 1010, and 0101. If the central-edge reference point
is 1100, then the vertices of the edge are 2000 and 0200. If the central-edge
reference point is 0110, then the vertices of the edge are 0200 and 0020. If
the central-edge reference point is 0011, then the vertices of the edge are
0020 and 0002. If the central-edge reference point is 1001, then the vertices
of the edge are 2000 and 0002. If the central-edge reference point is 1010,
then the vertices of the edge are 2000 and 0020. If the central-edge reference
point is 0101, then the vertices of the edge are 0200 and 0002.

Step 3 Determine the final value of the interpolant using the normal polynomial
interpolation of the second order with new values in the centers of the edges
determined on Step 2.

3.3.4 Interpolation Using Min—Max Limiter

Algorithm for constructing an interpolant with a limiter on tetrahedral grids based
on interpolation by a polynomial of order N involves the following steps:

Step 1 The value of the test function to the given point
⇀

r using polynomial inter-

polation of order N is determined. Let it be equal to uN

(
⇀

r
)
.

Step 2 The small tetrahedron or octahedron, in which the point
⇀

r falls, should
be determined. If the point falls into the octahedron, then one of the three
possible variants can be chosen. The axis is dividing this octahedron into
four tetrahedral, each of them has a volume being equal to the volumes of
other small tetrahedra, but not being similar to them.Next, one of these four
tetrahedral, in which of them the point falls into, should be determined.
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Step 3 Then uN

(
⇀

r
)
should be compared with the minimum m and maximumM

values at the vertices of this small tetrahedron, in which the point falls.

Step 3.1 If m ≤ uN

(
⇀

r
)

≤ M , then the value of the interpolant at the point
⇀

r is

taking equal to uN

(
⇀

r
)
.

Step 3.2 If uN

(
⇀

r
)

< m, then the value of the interpolant at the point
⇀

r is equal to
m.

Step 3.3 If uN

(
⇀

r
)

> M , then the value of the interpolant at the point
⇀

r is equal to

M.

The use of interpolation with a Min-Max limiter makes it possible to eliminate
the non-physical oscillations of polynomials arising in the presence of discontinuities
in the interpolated functions.

3.3.5 Parabolic Interpolation on Reference Points for
Interpolation of Fourth Order

Consider a tetrahedron ABCD with the volume V and 35 reference points 4000,
0400, 0040, 0004, 3100, 0310, 0031, 1003, 1300, 0130, 0013, 3001, 3010, 0301,
1030, 0103, 2200, 0220, 0022, 2002, 2020, 0202, 2110, 1210, 1120, 0211, 0121,
0112, 2101, 1201, 1102, 2011, 1021, 1012, and 1111 into this tetrahedron for N = 4.

One can divide this tetrahedron ABCD into 8 small tetrahedrons with volumes
V /8 using a set of 10 reference points in the Table 3.1 for N = 2.

One can use the algorithm discussed in Sect. 3.3.1 to understand, in which
of the 8 small tetrahedrons the point under consideration lies. Then one can use the
formulae for the parabolic interpolation discussed in Sect. 3.2.3 and use the Table 3.2
containing the congruence of four-digital indices for N = 4 and four-digital indices
for N = 2 for each of the 8 small tetrahedrons.

Table 3.1 Congruence of four-digital indices of reference points for N = 2 in order to divide the
initial tetrahedron into 8 small tetrahedrons and initial four-digital indices for N = 4

Index to divide,
N = 2

2000 0200 0020 0002 1100 0110 0011 1001 1010 0101

Initial index,
N = 4

4000 0400 0040 0004 2200 0220 0022 2002 2020 0202
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3.4 Conclusions

The analytical formulae for high-order interpolation on unstructured tetrahedral
grids, such as the polynomial interpolation, hybrid parabolic linear interpolation
on the unstructured tetrahedral grids, interpolation on the unstructured tetrahedral
grids using Min-Max limiter, and parabolic interpolation on the reference points for
interpolation of fourth order are suggested in this Chapter. The cases of order from
1 to 5 inclusively are considered. These interpolation techniques can be used during
creation new unstructured tetrahedral or regular gird instead of previous one as an
element of numerical method for finding 3D solutions on the unstructured tetrahedral
grids and during visualization of some space field and images’ creation or transfor-
mation. Also, the hierarchical nested unstructured tetrahedral grids and formulae for
recalculation from local to global indices are discussed in this Chapter. This type of
grids can be used also as an element of numerical method on the unstructured tetra-
hedral grids and for the visualization, creation, and transformation of images. These
formulae for recalculation indices are used to decrease the amount of calculation and
software operation time.
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Chapter 4
Piecewise Linear Interpolation on
Unstructured Tetrahedral Grids

Alena V. Favorskaya

Abstract This chapter develops analytical expressions for piecewise linear interpo-
lation onunstructured tetrahedralmeshes. These expressions are crucial becausemost
of the arithmetic operations are performed analytically and these operations no longer
need to be repeated during using the software. So, these expressions allow to perform
the supercomputer calculations with less amount of resources as dynamic computer
memory. The interpolation on unstructured grids plays a key role for numerical solv-
ing of last amount of problems in seismic exploration of oil and gas, non-destructive
testing of different up-to-date complex materials, investigation of seismic stability
of different complex objects like nuclear power plants, and especially for summation
of injuries of human bodies for medicine.

Keywords Interpolation · High-order interpolation · Unstructured grids
Tetrahedral grids · Polynomial interpolation · Piecewise interpolation · Hybrid
interpolation

4.1 Introduction

In this chapter, analytical expressions for piecewise linear interpolation on
unstructured tetrahedral grids is discussed. Other analytical expressions for the
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interpolation on unstructured tetrahedral grids are considered in Chap. 3. The crucial
issues of reasons for using an interpolation on the unstructured meshes are discussed
in Chap. 2. For example, a piecewise linear interpolation can be used as an element
of grid-characteristic method [1–9]. The issues of interpolation require very specific
mathematical approaches, so there are a lot of recent works in this area [10–19].
More detailed review of the works [10–15] is given in Chap. 2. More detailed review
of the works [16–19] is done in Chap. 3.

In this chapter, only the single case is considered, when the point under consider-
ation lays in the big tetrahedron ABCD and the relative volumes discussed in Sect.
3.2 for this point under consideration exist. Therefore, the following inequalities are
always satisfied:

(vA ∈ [0, 1]) ∧ (vB ∈ [0, 1]) ∧ (vC ∈ [0, 1]) ∧ (vD ∈ [0, 1]). (4.1)

In order to diminish the amount of mathematical expressions, six types of tables
are determined in Sect. 4.3 and adduce these tables for different N in Sects. 4.4–4.7,
respectively.

The chapter is structured as follows. In Sect. 4.2, a case of octahedron is discussed.
In Sect. 4.3, the types of the tables are introduced. In Sects. 4.4–4.7, the tables for
different amount of reference points and appropriate algorithm are presented. The
conclusions are given in Sect. 4.8.

4.2 Case of Octahedron

The planes discussed in Sect. 3.2.1, divide the big tetrahedron ABCD into
N(N 2+2)

3

small tetrahedrons and N (N−1)(N+1)
6 octahedrons. The volume of the big tetrahedron

ABCD is equal to V . Then the volume of every small tetrahedrons is equal to V/N 3.
All of these small tetrahedrons are similar to the big tetrahedron ABCD. The volume
of every octahedron is equal to 4V/N 3. One can draw an axis in every octahedron
by one of three ways. This axis will divide the octahedron into 4 different small
tetrahedrons. The volume of every of these different tetrahedrons is equal to V/N 3 as
well. However, they are not similar to the big tetrahedron ABCD. In order to simplify
our discussion let us consider degree N = 2. In this case, 4 smaller tetrahedrons and
1 octahedron are drawn in Fig. 4.1. The vertices of these 4 small tetrahedrons are
written in Table 4.1 from Sect. 4.4 and the vertices of this octahedron are written in
Table 4.2 from Sect. 4.4. Note that if the axis is determined for each of N (N−1)(N+1)

6
octahedrons, the total amount of small tetrahedrons into the initical tetrahedron will
be equal to N 3.

These different tetrahedrons for all 3 ways of drawing the axis into the octahedron
for N = 2 are shown in Figs. 4.2, 4.3 and 4.4 respectively.

Thus, N3 small tetrahedrons of two types are. The small tetrahedrons of the first
type are similar for the big one. The small tetrahedrons of the second type are not

https://doi.org/10.1007/978-3-319-76201-2_3
https://doi.org/10.1007/978-3-319-76201-2_2
https://doi.org/10.1007/978-3-319-76201-2_2
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Fig. 4.1 Octahedron based
on reference points for
polynomial interpolation
with order 2

Table 4.1 The vertices of the
small tetrahedrons for N = 2,
table of the third type

No A′ B′ C′ D′

1 2000 1100 1010 1001

2 1100 0200 0110 0101

3 1010 0110 0020 0011

4 1001 0101 0011 0002

Table 4.2 The vertices of the octahedron for N = 2, table of the third type

No A′ B′ C′ D′ E′ F ′

5 1100 0110 0011 1001 1010 0101

Fig. 4.2 Small different
tetrahedrons in the case of
using the first way of
drawing axis in the
octahedron based on
reference points for
polynomial interpolation
with order 2: a the first small
different tetrahedron, b the
second small different
tetrahedron, c the third small
different tetrahedron, d the
fourth small different
tetrahedron

similar to the big one. But they have the same volume as small tetrahedrons of the first
type. Also each octahedron contains from four small tetrahedrons of the second type.
And there are three different ways to delete the octahedron by four small tetrahedrons
of the second type.
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Fig. 4.3 Small different tetrahedrons in the case of using the second way of drawing axis in the
octahedron based on reference points for polynomial interpolation with order 2: a the first small
different tetrahedron,b the second small different tetrahedron, c the third small different tetrahedron,
d the fourth small different tetrahedron

Fig. 4.4 Small different tetrahedrons in the case of using the third way of drawing axis in the
octahedron based on reference points for polynomial interpolation with order 2: a the first small
different tetrahedron,b the second small different tetrahedron, c the third small different tetrahedron,
d the fourth small different tetrahedron
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Table 4.3 Inequalities for finding the small tetrahedron or the octahedron, in which the point under
consideration lies for N = 2, table of the first type

No 2vA 2vB 2vC 2vD No 2vA 2vB 2vC 2vD

1 >1 − − − 4 − − − >1

2 − >1 − − 5 − − − −
3 − − >1 −

Table 4.4 Logical expressions being true if the point under consideration lies into the small tetra-
hedron or into the octahedron for N = 2, table of the second type

No 2vA ∈ 2vB ∈ 2vC ∈ 2vD ∈ No 2vA ∈ 2vB ∈ 2vC ∈ 2vD ∈
1 (1, 2] [0, 1] [0, 1] [0, 1] 4 [0, 1] [0, 1] [0, 1] (1, 2]

2 [0, 1] (1, 2] [0, 1] [0, 1] 5 [0, 1] [0, 1] [0, 1] [0, 1]

3 [0, 1] [0, 1] (1, 2] [0, 1]

Table 4.5 Formulae for relative volumes corresponding the appropriate vertices of the small tetra-
hedrons for N = 2, table of the fourth type

No vA′ vB′ vC′ vD′

1 2vA − 1 2vB 2vC 2vD
2 2vA 2vB − 1 2vC 2vD
3 2vA 2vB 2vC − 1 2vD
4 2vA 2vB 2vC 2vD − 1

Table 4.6 Axis points for each of 3 ways to draw them for the octahedron and corresponding
expressions for v1 and v2 for N = 2, table of the fifth type

No Axis no A′ B′ v1 v2

5 1 0110 1001 (2vA + 2vB − 2vC − 2vD)/2 (2vA + 2vC − 2vB − 2vD)/2

2 1010 0101 (2vA + 2vB − 2vC − 2vD)/2 (2vB + 2vC − 2vD − 2vA)/2

3 1100 0011 (2vB + 2vC − 2vD − 2vA)/2 (2vA + 2vC − 2vB − 2vD)/2

4.3 Types of Tables and Their Description

In order to diminish the amount of mathematical expressions, six types of tables are
defined. The lines in the tables help to catch the topological similarity of the formulae
and due to this it is suitable to search for errors and misprints in the program code.

Tables of the first type contain the inequalities for finding the small tetrahedron
or the octahedron. Tables 4.3 and 4.7 in Sect. 4.4, Table 4.11 in Sect. 4.5, Table 4.18
in Sect. 4.6, and Table 4.25 in Sect. 4.7 are the tables of the first type.

In order to obtain an inequality based on the filled cell in row I and in column J
from the table of the first type, one can take the relative volume in the zero row and
column J and put it before the condition in the cell IJ . For example, the inequality
based on the cell 3, 3 in Table 4.3 could be written as follows:
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Table 4.7 Inequalities for finding the different small tetrahedron, in which the point under consid-
eration lies, table of the first type

No v1 v2

1 >0 >0

2 >0 −
3 − >0

4 − −

Table 4.8 Logical expressions being true if the point under consideration lies into the different
small tetrahedron, table of the second type

No v1 ∈ v2 ∈
1 (0, 1] (0, 1]

2 (0, 1] [−1, 0]

3 [−1, 0] (0, 1]

4 [−1, 0] [−1, 0]

Table 4.9 The vertices C′, D′ of the different small tetrahedrons and the formulae for relative
volumes corresponding the appropriate vertices A′, B′ of the different small tetrahedrons for N = 2,
table of the sixth type

No Axis no Small
tetrahedron
no

C′ D′ vA′ vB′

5 1 1 1100 1010 1 − 2vA 2vD
2 1100 0101 2vC 1 − 2vB
3 0011 1010 2vB 1 − 2vC
4 0011 0101 1 − 2vD 2vA

2 1 1100 0110 1 − 2vB 2vD
2 1100 1001 2vC 1 − 2vA
3 0011 0110 2vA 1 − 2vC
4 0011 1001 1 − 2vD 2vB

3 1 0110 1010 1 − 2vC 2vD
2 0110 0101 2vA 1 − 2vB
3 1001 1010 2vB 1 − 2vA
4 1001 0101 1 − 2vD 2vC

Table 4.10 Formulae for relative volumes corresponding the appropriate vertices C′, D′ of the
different small tetrahedrons, table of the fourth type

Small tetrahedron no vC′ vD′

1 v1 v2
2 v1 −v2
3 −v1 v2
4 −v1 −v2
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Table 4.13 The vertices of the small tetrahedrons for N = 3, table of the third type

No A′ B′ C′ D′ No A′ B′ C′ D′

1 3000 2100 2010 2001 7 1011 0111 0021 0012

2 1200 0300 0210 0201 8 2001 1101 1011 1002

3 1020 0120 0030 0021 9 2010 1110 1020 1011

4 1002 0102 0012 0003 10 1101 0201 0111 0102

5 2100 1200 1110 1101 15 0111 1011 1101 1110

6 1110 0210 0120 0111

2vC > 1. (4.2)

In order to obtain a logical expression based on the row I in the table of first type,
one can write the conjunction of all inequalities based on the cells in this row. For
example, the logical expression based on the row 9 from Table 4.25 can be written
as follows:

(5vA > 1) ∧ (5vB > 3). (4.3)

Tables of the second type contain the logical expressions being true if the point
under consideration is into the small tetrahedron or into the octahedron with number
in the zero column. Tables 4.4 and 4.8 in Sect. 4.4, Table 4.12 in Sect. 4.5, Table 4.19
in Sect. 4.6, and Table 4.26 in Sect. 4.7 are the tables of the second type.

In order to obtain a logical expression based on the cell in row I and in column J
from the table of the second type, one can take the relative volume in the zero row
and column J and put it before the segment in the cell IJ . For example, the logical
expression based on the cell 2, 4 in Table 4.4 can be written as follows:

2vD ∈ [0, 1]. (4.4)

In order to obtain a logical expression based on the row I in the table of the second
type, one can write the conjunction of all logical expression based on the cells in this
row I . For example, the logical expression based on the row 3 in Table 4.4 can be
written as follows:

(2vA ∈ [0, 1]) ∧ (2vB ∈ [0, 1]) ∧ (2vC ∈ (1, 2]) ∧ (2vD ∈ [0, 1]). (4.5)

Tables of the third type contain the reference points corresponding to the vertices of
the small tetrahedrons or the octahedrons. Tables 4.1 and 4.2 in Sect. 4.4, Tables 4.13
and 4.14 in Sect. 4.5, Tables 4.20 and 4.21 in Sect. 4.6, and Tables 4.27 and 4.28 in
Sect. 4.7 are the tables of the third type.

Tables of the fourth type contain the formulae for relative volumes corresponding
to the appropriate vertices of the small tetrahedrons. Tables 4.5 and 4.10 in Sect. 4.4,
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Table 4.15 Formulae for relative volumes corresponding the appropriate vertices of the small
tetrahedrons for N = 3, table of the fourth type

No vA′ vB′ vC′ vD′ No vA′ vB′ vC′ vD′

1 3vA − 2 3vB 3vC 3vD 7 3vA 3vB 3vC − 1 3vD − 1

2 3vA 3vB − 2 3vC 3vD 8 3vA − 1 3vB 3vC 3vD − 1

3 3vA 3vB 3vC − 2 3vD 9 3vA − 1 3vB 3vC − 1 3vD
4 3vA 3vB 3vC 3vD − 2 10 3vA 3vB − 1 3vC 3vD − 1

5 3vA − 1 3vB − 1 3vC 3vD 15 1 − 3vA 1− 3vB 1− 3vC 1− 3vD
6 3vA 3vB − 1 3vC − 1 3vD

Table 4.16 Axis points for each of 3ways to draw them for all of the octahedrons and corresponding
expressions for v1 and v2 for N = 3, table of the fifth type

No Axis
no

A′ B′ v1 v2

11 1 1110 2001 (3vA + 3vB − 3vC − 3vD − 1)/2 (3vA + 3vC − 3vB − 3vD − 1)/2

2 2010 1101 (3vA + 3vB − 3vC − 3vD − 1)/2 (3vB + 3vC − 3vD − 3vA + 1)/2

3 2100 1011 (3vB + 3vC − 3vD − 3vA + 1)/2 (3vA + 3vC − 3vB − 3vD − 1)/2

12 1 0210 1101 (3vA + 3vB − 3vC − 3vD − 1)/2 (3vA + 3vC − 3vB − 3vD + 1)/2

2 1110 0201 (3vA + 3vB − 3vC − 3vD − 1)/2 (3vB + 3vC − 3vD − 3vA − 1)/2

3 1200 0111 (3vB + 3vC − 3vD − 3vA − 1)/2 (3vA + 3vC − 3vB − 3vD + 1)/2

13 1 0120 1011 (3vA + 3vB − 3vC − 3vD + 1)/2 (3vA + 3vC − 3vB − 3vD − 1)/2

2 1020 0111 (3vA + 3vB − 3vC − 3vD + 1)/2 (3vB + 3vC − 3vD − 3vA − 1)/2

3 1110 0021 (3vB + 3vC − 3vD − 3vA − 1)/2 (3vA + 3vC − 3vB − 3vD − 1)/2

14 1 0111 1002 (3vA + 3vB − 3vC − 3vD + 1)/2 (3vA + 3vC − 3vB − 3vD + 1)/2

2 1011 0102 (3vA + 3vB − 3vC − 3vD + 1)/2 (3vB + 3vC − 3vD − 3vA + 1)/2

3 1101 0012 (3vB + 3vC − 3vD − 3vA + 1)/2 (3vA + 3vC − 3vB − 3vD + 1)/2

Table 4.15 in Sect. 4.5, Table 4.22 in Sect. 4.6, and Table 4.29 in Sect. 4.7 are the
tables of the fourth type.

Tables of the fifth type contain the axis points for each of 3 ways to draw them
for all of the octahedrons and corresponding to expressions for v1 and v2 defined to
diminish the amount of calculation. Table 4.6 in Sect. 4.4, Table 4.16 in Sect. 4.5,
Table 4.23 in Sect. 4.6, and Table 4.30 in Sect. 4.7 are the tables of the fifth type.
Note that a number of the ways for drawing the axis is called the axis number.

The sixth type is composed of the third and the fourth ones. Table 4.9 in Sect. 4.4,
Table 4.17 in Sect. 4.5, Table 4.24 in Sect. 4.6, and Table 4.31 in Sect. 4.7 are the
tables of the sixth type.

Note that the 4 different small tetrahedrons lied into one octahedron always have
the vertices A′ and B′ from the corresponding table of the fifth type and coincides
with the axis points. Other two vertices C′ and D′ can be found in appropriate line
in the corresponding table of sixth type. For example, the vertices of third different
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Table 4.17 The vertices C′, D′ of the different small tetrahedrons and the formulae for relative
volumes corresponding the appropriate vertices A′, B′ of the different small tetrahedrons for N = 3,
table of the sixth type

No Axis no Small
tetrahedron
no

C′ D′ vA′ vB′

11 1 1 2100 2010 2 − 3vA 3vD
2 2100 1101 3vC 1 − 3vB
3 1011 2010 3vB 1 − 3vC
4 1011 1101 1 − 3vD 3vA − 1

2 1 2100 1110 1 − 3vB 3vD
2 2100 2001 3vC 2 − 3vA
3 1011 1110 3vA − 1 1 − 3vC
4 1011 2001 1 − 3vD 3vB

3 1 1110 2010 1 − 3vC 3vD
2 1110 1101 3vA − 1 1 − 3vB
3 2001 2010 3vB 2 − 3vA
4 2001 1101 1 − 3vD 3vC

12 1 1 1200 1110 1 − 3vA 3vD
2 1200 0201 3vC 2 − 3vB
3 0111 1110 3vB − 1 1 − 3vC
4 0111 0201 1 − 3vD 3vA

2 1 1200 0210 2 − 3vB 3vD
2 1200 1101 3vC 1 − 3vA
3 0111 0210 3vA 1 − 3vC
4 0111 1101 1 − 3vD 3vB − 1

3 1 0210 1110 1 − 3vC 3vD
2 0210 0201 3vA 2 − 3vB
3 1101 1110 3vB − 1 1 − 3vA
4 1101 0201 1 − 3vD 3vC

13 1 1 1110 1020 1 − 3vA 3vD
2 1110 0111 3vC − 1 1 − 3vB
3 0021 1020 3vB 2 − 3vC
4 0021 0111 1 − 3vD 3vA

2 1 1110 0120 1 − 3vB 3vD
2 1110 1011 3vC − 1 1 − 3vA
3 0021 0120 3vA 2 − 3vC
4 0021 1011 1 − 3vD 3vB

3 1 0120 1020 2 − 3vC 3vD
2 0120 0111 3vA 1 − 3vB
3 1011 1020 3vB 1 − 3vA
4 1011 0111 1 − 3vD 3vC − 1

(continued)
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Table 4.17 (continued)

No Axis no Small
tetrahedron
no

C′ D′ vA′ vB′

14 1 1 1101 1011 1 − 3vA 3vD − 1

2 1101 0102 3vC 1 − 3vB
3 0012 1011 3vB 1 − 3vC
4 0012 0102 2 − 3vD 3vA

2 1 1101 0111 1 − 3vB 3vD − 1

2 1101 1002 3vC 1 − 3vA
3 0012 0111 3vA 1 − 3vC
4 0012 1002 2 − 3vD 3vB

3 1 0111 1011 1 − 3vC 3vD − 1

2 0111 0102 3vA 1 − 3vB
3 1002 1011 3vB 1 − 3vA
4 1002 0102 2 − 3vD 3vC

small tetrahedron into the octahedron with number 18 for N = 5 and the second way
for drawing the axis are 1310, 0401, 0311, and 0410.

Note that the formulae for the relative volumes for the vertices C′ and D′ of all of
the 4 different small tetrahedrons are always given in the Table 4.10 in Sect. 4.4. The
relative volumes for the vertices A′ and B′ are given in the appropriate table of the
sixth type. For example, the relative volumes of the third different small tetrahedron
into the octahedron with the number 18 for N = 5 and the second way for drawing
the axis are given by Eqs. 4.6–4.9.

vA′ = 5vA (4.6)

vB ′ = 1 − 5vC (4.7)

vC ′ = −v1 (4.8)

vD′ = v2 (4.9)

Note that only the values NvA, NvB, NvC , and NvD are used in all types of tables.

4.4 Tables and Algorithms for N = 2

If all of the logical expressions corresponding to the rows 1, 2, …, I − 1 in Table 4.3
are false and the logical expression corresponding to the row I in Table 4.3 is true, then
the logical expression corresponding to the row I in Table 4.4 is true and, therefore,
the point under consideration lies into the small tetrahedron I with vertices given in
Table 4.1 or into the octahedron I with the vertices given in Table 4.2. If it is the
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Table 4.23 Axis points for each of 3 ways to draw it for all of the octahedrons and corresponding
expressions for v1 and v2 for N = 4, table of the fifth type

No Axis
no

A′ B′ v1 v2

17 1 2110 3001 (4vA + 4vB − 4vC − 4vD − 2)/2 (4vA + 4vC − 4vB − 4vD − 2)/2

2 3010 2101 (4vA + 4vB − 4vC − 4vD − 2)/2 (4vB + 4vC − 4vD − 4vA + 2)/2

3 3100 2011 (4vB + 4vC − 4vD − 4vA + 2)/2 (4vA + 4vC − 4vB − 4vD − 2)/2

18 1 0310 1201 (4vA + 4vB − 4vC − 4vD − 2)/2 (4vA + 4vC − 4vB − 4vD + 2)/2

2 1210 0301 (4vA + 4vB − 4vC − 4vD − 2)/2 (4vB + 4vC − 4vD − 4vA − 2)/2

3 1300 0211 (4vB + 4vC − 4vD − 4vA − 2)/2 (4vA + 4vC − 4vB − 4vD + 2)/2

19 1 0130 1021 (4vA + 4vB − 4vC − 4vD + 2)/2 (4vA + 4vC − 4vB − 4vD − 2)/2

2 1030 0121 (4vA + 4vB − 4vC − 4vD + 2)/2 (4vB + 4vC − 4vD − 4vA − 2)/2

3 1120 0031 (4vB + 4vC − 4vD − 4vA − 2)/2 (4vA + 4vC − 4vB − 4vD − 2)/2

20 1 0112 1003 (4vA + 4vB − 4vC − 4vD + 2)/2 (4vA + 4vC − 4vB − 4vD + 2)/2

2 1012 0103 (4vA + 4vB − 4vC − 4vD + 2)/2 (4vB + 4vC − 4vD − 4vA + 2)/2

3 1102 0013 (4vB + 4vC − 4vD − 4vA + 2)/2 (4vA + 4vC − 4vB − 4vD + 2)/2

25 1 1210 2101 (4vA + 4vB − 4vC − 4vD − 2)/2 (4vA + 4vC − 4vB − 4vD)/2

2 2110 1201 (4vA + 4vB − 4vC − 4vD − 2)/2 (4vB + 4vC − 4vD − 4vA)/2

3 2200 1111 (4vB + 4vC − 4vD − 4vA)/2 (4vA + 4vC − 4vB − 4vD)/2

26 1 0220 1111 (4vA + 4vB − 4vC − 4vD)/2 (4vA + 4vC − 4vB − 4vD)/2

2 1120 0211 (4vA + 4vB − 4vC − 4vD)/2 (4vB + 4vC − 4vD − 4vA − 2)/2

3 1210 0121 (4vB + 4vC − 4vD − 4vA − 2)/2 (4vA + 4vC − 4vB − 4vD)/2

27 1 0121 1012 (4vA + 4vB − 4vC − 4vD + 2)/2 (4vA + 4vC − 4vB − 4vD)/2

2 1021 0112 (4vA + 4vB − 4vC − 4vD + 2)/2 (4vB + 4vC − 4vD − 4vA)/2

3 1111 0022 (4vB + 4vC − 4vD − 4vA)/2 (4vA + 4vC − 4vB − 4vD)/2

28 1 1111 2002 (4vA + 4vB − 4vC − 4vD)/2 (4vA + 4vC − 4vB − 4vD)/2

2 2011 1102 (4vA + 4vB − 4vC − 4vD)/2 (4vB + 4vC − 4vD − 4vA + 2)/2

3 2101 1012 (4vB + 4vC − 4vD − 4vA + 2)/2 (4vA + 4vC − 4vB − 4vD)/2

29 1 1120 2011 (4vA + 4vB − 4vC − 4vD)/2 (4vA + 4vC − 4vB − 4vD − 2)/2

2 2020 1111 (4vA + 4vB − 4vC − 4vD)/2 (4vB + 4vC − 4vD − 4vA)/2

3 2110 1021 (4vB + 4vC − 4vD − 4vA)/2 (4vA + 4vC − 4vB − 4vD − 2)/2

30 1 0211 1102 (4vA + 4vB − 4vC − 4vD)/2 (4vA + 4vC − 4vB − 4vD + 2)/2

2 1111 0202 (4vA + 4vB − 4vC − 4vD)/2 (4vB + 4vC − 4vD − 4vA)/2

3 1201 0112 (4vB + 4vC − 4vD − 4vA)/2 (4vA + 4vC − 4vB − 4vD + 2)/2

tetrahedron I , one can find the relative volumes for its vertices in Table 4.5. If it is the
octahedron I , one of 3 ways for drawing the axis into it should be chosen. Then one
can calculate the appropriate v1 and v2 using the suitable formulae given in Table 4.6.
One can use the Table 4.7 to find a number of the different small tetrahedron into this
octahedron I . If all of the logical expressions corresponding to the rows 1, …, J − 1
in Table 4.7 are false and the logical expression corresponding the row J in Table 4.7
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Table 4.24 The vertices C′, D′ of the different small tetrahedrons and the formulae for relative
volumes corresponding the appropriate vertices A′, B′ of the different small tetrahedrons for N = 4,
table of the sixth type

No Axis no Small
tetrahedron
no

C′ D′ vA′ vB′

17 1 1 3100 3010 3 − 4vA 4vD
2 3100 2101 4vC 1 − 4vB
3 2011 3010 4vB 1 − 4vC
4 2011 2101 1 − 4vD 4vA − 2

2 1 3100 2110 1 − 4vB 4vD
2 3100 3001 4vC 3 − 4vA
3 2011 2110 4vA − 2 1 − 4vC
4 2011 3001 1 − 4vD 4vB

3 1 2110 3010 1 − 4vC 4vD
2 2110 2101 4vA − 2 1 − 4vB
3 3001 3010 4vB 3 − 4vA
4 3001 2101 1 − 4vD 4vC

18 1 1 1300 1210 1 − 4vA 4vD
2 1300 0301 4vC 3 − 4vB
3 0211 1210 4vB − 2 1 − 4vC
4 0211 0301 1 − 4vD 4vA

2 1 1300 0310 3 − 4vB 4vD
2 1300 1201 4vC 1 − 4vA
3 0211 0310 4vA 1 − 4vC
4 0211 1201 1 − 4vD 4vB − 2

3 1 0310 1210 1 − 4vC 4vD
2 0310 0301 4vA 3 − 4vB
3 1201 1210 4vB − 2 1 − 4vA
4 1201 0301 1 − 4vD 4vC

19 1 1 1120 1030 1 − 4vA 4vD
2 1120 0121 4vC − 2 1 − 4vB
3 0031 1030 4vB 3 − 4vC
4 0031 0121 1 − 4vD 4vA

2 1 1120 0130 1 − 4vB 4vD
2 1120 1021 4vC − 2 1 − 4vA
3 0031 0130 4vA 3 − 4vC
4 0031 1021 1 − 4vD 4vB

3 1 0130 1030 3 − 4vC 4vD

(continued)
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Table 4.24 (continued)

No Axis no Small
tetrahedron
no

C′ D′ vA′ vB′

2 0130 0121 4vA 1 − 4vB
3 1021 1030 4vB 1 − 4vA
4 1021 0121 1 − 4vD 4vC − 2

20 1 1 1102 1012 1 − 4vA 4vD − 2

2 1102 0103 4vC 1 − 4vB
3 0013 1012 4vB 1 − 4vC
4 0013 0103 3 − 4vD 4vA

2 1 1102 0112 1 − 4vB 4vD − 2

2 1102 1003 4vC 1 − 4vA
3 0013 0112 4vA 1 − 4vC
4 0013 1003 3 − 4vD 4vB

3 1 0112 1012 1 − 4vC 4vD − 2

2 0112 0103 4vA 1 − 4vB
3 1003 1012 4vB 1 − 4vA
4 1003 0103 3 − 4vD 4vC

25 1 1 2200 2110 2 − 4vA 4vD
2 2200 1201 4vC 2 − 4vB
3 1111 2110 4vB − 1 1 − 4vC
4 1111 1201 1 − 4vD 4vA − 1

2 1 2200 1210 2 − 4vB 4vD
2 2200 2101 4vC 2 − 4vA
3 1111 1210 4vA − 1 1 − 4vC
4 1111 2101 1 − 4vD 4vB − 1

3 1 1210 2110 1 − 4vC 4vD
2 1210 1201 4vA − 1 2 − 4vB
3 2101 2110 4vB − 1 2 − 4vA
4 2101 1201 1 − 4vD 4vC

26 1 1 1210 1120 1 − 4vA 4vD
2 1210 0211 4vC − 1 2 − 4vB
3 0121 1120 4vB − 1 2 − 4vC
4 0121 0211 1 − 4vD 4vA

2 1 1210 0220 2 − 4vB 4vD
2 1210 1111 4vC − 1 1 − 4vA
3 0121 0220 4vA 2 − 4vC
4 0121 1111 1 − 4vD 4vB − 1

(continued)
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Table 4.24 (continued)

No Axis no Small
tetrahedron
no

C′ D′ vA′ vB′

3 1 0220 1120 2 − 4vC 4vD
2 0220 0211 4vA 2 − 4vB
3 1111 1120 4vB − 1 1 − 4vA
4 1111 0211 1 − 4vD 4vC − 1

27 1 1 1111 1021 1 − 4vA 4vD − 1

2 1111 0112 4vC − 1 1 − 4vB
3 0022 1021 4vB 2 − 4vC
4 0022 0112 2 − 4vD 4vA

2 1 1111 0121 1 − 4vB 4vD − 1

2 1111 1012 4vC − 1 1 − 4vA
3 0022 0121 4vA 2 − 4vC
4 0022 1012 2 − 4vD 4vB

3 1 0121 1021 2 − 4vC 4vD − 1

2 0121 0112 4vA 1 − 4vB
3 1012 1021 4vB 1 − 4vA
4 1012 0112 2 − 4vD 4vC − 1

28 1 1 2101 2011 2 − 4vA 4vD − 1

2 2101 1102 4vC 1 − 4vB
3 1012 2011 4vB 1 − 4vC
4 1012 1102 2 − 4vD 4vA − 1

2 1 2101 1111 1 − 4vB 4vD − 1

2 2101 2002 4vC 2 − 4vA
3 1012 1111 4vA − 1 1 − 4vC
4 1012 2002 2 − v 4vB

3 1 1111 2011 1 − 4vC 4vD − 1

2 1111 1102 4vA − 1 1 − 4vB
3 2002 2011 4vB 2 − 4vA
4 2002 1102 2 − 4vD 4vC

29 1 1 2200 2110 2 − 4vA 4vD
2 2200 1201 4vC − 1 1 − 4vB
3 1111 2110 4vB 2 − 4vC
4 1111 1201 1 − 4vD 4vA − 1

2 1 2110 1120 1 − 4vB 4vD
2 2110 2011 4vC − 1 2 − 4vA
3 1021 1120 4vA − 1 2 − 4vC

(continued)
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Table 4.24 (continued)

No Axis no Small
tetrahedron
no

C′ D′ vA′ vB′

4 1021 2011 1 − 4vD 4vB
3 1 1120 2020 2 − 4vC 4vD

2 1120 1111 4vA − 1 1 − 4vB
3 2011 2020 4vB 2 − 4vA
4 2011 1111 1 − 4vD 4vC − 1

30 1 1 1201 1111 1 − 4vA 4vD − 1

2 1201 0202 4vC 2 − 4vB
3 0112 1111 4vB − 1 1 − 4vC
4 0112 0202 2 − 4vD 4vA

2 1 1201 0211 2 − 4vB 4vD − 1

2 1201 1102 4vC 1 − 4vA
3 0112 0211 4vA 1 − 4vC
4 0112 1102 2 − 4vD 4vB − 1

3 1 0211 1111 1 − 4vC 4vD − 1

2 0211 0202 4vA 2 − 4vB
3 1102 1111 4vB − 1 1 − 4vA
4 1102 0202 2 − 4vD 4vC

is true, then the logical expression corresponding the row J in Table 4.8 is true and,
therefore, the point under consideration lies into the different small tetrahedron with
the number J . One can find its vertices in Tables 4.6 and 4.9 and corresponding
relative volumes in Tables 4.9 and 4.10.

For example, I = 2. If

(2vA ≤ 1) ∧ (2vB > 1), (4.10)

then

(2vA ∈ [0, 1]) ∧ (2vB ∈ (1, 2]) ∧ (2vC ∈ [0, 1]) ∧ (2vD ∈ [0, 1]) (4.11)

and, therefore, the point under consideration lies into the small tetrahedron with the
number 2 and vertices 1100, 0200, 0110, and 0101. The result of piecewise linear
interpolation can be determined using Eq. 4.12.

u
(

⇀

r
)

= 2vA
(

⇀

r
)
u1100 +

(
2vB

(
⇀

r
)

− 1
)
u0200 + 2vC

(
⇀

r
)
u0110 + 2vD

(
⇀

r
)
u0101

(4.12)
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Table 4.25 Inequalities for finding the small tetrahedron or the octahedron, in which the point
under consideration lies for N = 5, table of the first type

No 5vA 5vB 5vC 5vD No 5vA 5vB 5vC 5vD

1 >4 − − − 34 >1 >2 − >1

2 − >4 − − 35 >1 >1 − >2

3 − − >4 − 36 >2 − >1 >1

4 − − − >4 37 >1 − >2 >1

5 >3 >1 − − 38 >1 − >1 >2

6 − >3 >1 − 39 >2 >1 − −
7 − − >3 >1 40 − >2 >1 −
8 >1 − − >3 41 − − >2 >1

9 >1 >3 − − 42 >1 − − >2

10 − >1 >3 − 43 >1 >2 − −
11 − − >1 >3 44 − >1 >2 −
12 >3 − − >1 45 − − >1 >2

13 >3 − >1 − 46 >2 − − >1

14 − >3 − >1 47 >2 − >1 −
15 >1 − >3 − 48 − >2 − >1

16 − >1 − >3 49 >1 − >2 −
17 >3 − − − 50 − >1 − >2

18 − >3 − − 51 >2 − − −
19 − − >3 − 52 − >2 − −
20 − − − >3 53 − − >2 −
21 >2 >2 − − 54 − − − >2

22 − >2 >2 − 55 − − <1 <1

23 − − >2 >2 56 <1 − − <1

24 >2 − − >2 57 <1 <1 − −
25 >2 − >2 − 58 − <1 <1 −
26 − >2 − >2 59 − <1 − <1

27 >2 >1 >1 − 60 <1 − <1 −
28 >1 >2 >1 − 61 <1 − − −
29 >1 >1 >2 − 62 − <1 − −
30 − >2 >1 >1 63 − − <1 −
31 − >1 >2 >1 64 − − − <1

32 − >1 >1 >2 65 − − − −
33 >2 >1 − >1

4.5 Tables and Algorithms for N = 3

Consider degree N = 3. 11 smaller tetrahedrons and 4 octahedrons are. If all of the
logical expressions corresponding to the rows 1, 2, …, I − 1 in Table 4.11 are false
and the logical expression corresponding to the row I in Table 4.11 is true, then the
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Table 4.28 The vertices of
the octahedrons for N = 5,
table of the third type

No A′ B′ C′ D′ E′ F ′

17 4100 3110 3011 4001 4010 3101

18 1400 0410 0311 1301 1310 0401

19 1130 0140 0041 1031 1040 0131

20 1103 0113 0014 1004 1013 0104

39 3200 2210 2111 3101 3110 2201

40 1310 0320 0221 1211 1220 0311

41 1121 0131 0032 1022 1031 0122

42 2102 1112 1013 2003 2012 1103

43 2300 1310 1211 2201 2210 1301

44 1220 0230 0131 1121 1130 0221

45 1112 0122 0023 1013 1022 0113

46 3101 2111 2012 3002 3011 2102

47 3110 2120 2021 3011 3020 2111

48 1301 0311 0212 1202 1211 0302

49 2120 1130 1031 2021 2030 1121

50 1202 0212 0113 1103 1112 0203

61 1211 0221 0122 1112 1121 0212

62 2111 1121 1022 2012 2021 1112

63 2201 1211 1112 2102 2111 1202

64 2210 1220 1121 2111 2120 1211

logical expression corresponding to the row I in Table 4.12 is true and, therefore,
the point under consideration lies into the small tetrahedron I with vertices given
in Table 4.13 or into the octahedron I with the vertices given in Table 4.14. If it is
the tetrahedron I , one can find the relative volumes for its vertices in Table 4.15. If
it is the octahedron I , one of 3 ways for drawing the axis into it should be chosen.
Then one can calculate the appropriate v1 and v2 using the suitable formulae given in
Table 4.16. One can use the Table 4.7 in Sect. 4.4 to find a number of different small
tetrahedron into this octahedron I . If all of the logical expressions corresponding to
the rows 1, …, J − 1 in Table 4.7 are false and the logical expression corresponding
to the row J in Table 4.7 is true, then the logical expression corresponding to the
row J in Table 4.8 in Sect. 4.4 is true and, therefore, the point under consideration
lies into different small tetrahedron with the number J . One can find its vertices in
Tables 4.16 and 4.17 and corresponding relative volumes in Table 4.10 in Sect. 4.4
and in Table 4.17.

For example, I = 11. If all of the logical expressions corresponding to the rows 1,
2, 3, 4, 5, 6, 7, 8, 9, and 10 in Table 4.11 are false and

3vA > 1, (4.13)

then
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Table 4.30 Axis points for each of 3ways to draw them for all of the octahedrons and corresponding
expressions for v1 and v2 for N = 5, table of the fifth type

No Axis
no

A′ B′ v1 v2

17 1 3110 4001 (5vA + 5vB − 5vC − 5vD − 3)/2 (5vA + 5vC − 5vB − 5vD − 3)/2

2 4010 3101 (5vA + 5vB − 5vC − 5vD − 3)/2 (5vB + 5vC − 5vD − 5vA + 3)/2

3 4100 3011 (5vB + 5vC − 5vD − 5vA + 3)/2 (5vA + 5vC − 5vB − 5vD − 3)/2

18 1 0410 1301 (5vA + 5vB − 5vC − 5vD − 3)/2 (5vA + 5vC − 5vB − 5vD + 3)/2

2 1310 0401 (5vA + 5vB − 5vC − 5vD − 3)/2 (5vB + 5vC − 5vD − 5vA − 3)/2

3 1400 0311 (5vB + 5vC − 5vD − 5vA − 3)/2 (5vA + 5vC − 5vB − 5vD + 3)/2

19 1 0140 1031 (5vA + 5vB − 5vC − 5vD + 3)/2 (5vA + 5vC − 5vB − 5vD − 3)/2

2 1040 0131 (5vA + 5vB − 5vC − 5vD + 3)/2 (5vB + 5vC − 5vD − 5vA − 3)/2

3 1130 0041 (5vB + 5vC − 5vD − 5vA − 3)/2 (5vA + 5vC − 5vB − 5vD − 3)/2

20 1 0113 1004 (5vA + 5vB − 5vC − 5vD + 3)/2 (5vA + 5vC − 5vB − 5vD + 3)/2

2 1013 0104 (5vA + 5vB − 5vC − 5vD + 3)/2 (5vB + 5vC − 5vD − 5vA + 3)/2

3 1103 0014 (5vB + 5vC − 5vD − 5vA + 3)/2 (5vA + 5vC − 5vB − 5vD + 3)/2

39 1 2210 3101 (5vA + 5vB − 5vC − 5vD − 3)/2 (5vA + 5vC − 5vB − 5vD − 1)/2

2 3110 2201 (5vA + 5vB − 5vC − 5vD − 3)/2 (5vB + 5vC − 5vD − 5vA + 1)/2

3 3200 2111 (5vB + 5vC − 5vD − 5vA + 1)/2 (5vA + 5vC − 5vB − 5vD − 1)/2

40 1 0320 1211 (5vA + 5vB − 5vC − 5vD − 1)/2 (5vA + 5vC − 5vB − 5vD + 1)/2

2 1220 0311 (5vA + 5vB − 5vC − 5vD − 1)/2 (5vB + 5vC − 5vD − 5vA − 3)/2

3 1310 0221 (5vB + 5vC − 5vD − 5vA − 3)/2 (5vA + 5vC − 5vB − 5vD + 1)/2

41 1 0131 1022 (5vA + 5vB − 5vC − 5vD + 3)/2 (5vA + 5vC − 5vB − 5vD − 1)/2

2 1031 0122 (5vA + 5vB − 5vC − 5vD + 3)/2 (5vB + 5vC − 5vD − 5vA − 1)/2

3 1121 0032 (5vB + 5vC − 5vD − 5vA − 1)/2 (5vA + 5vC − 5vB − 5vD − 1)/2

42 1 1112 2003 (5vA + 5vB − 5vC − 5vD + 1)/2 (5vA + 5vC − 5vB − 5vD + 1)/2

2 2012 1103 (5vA + 5vB − 5vC − 5vD + 1)/2 (5vB + 5vC − 5vD − 5vA + 3)/2

3 2102 1013 (5vB + 5vC − 5vD − 5vA + 3)/2 (5vA + 5vC − 5vB − 5vD + 1)/2

43 1 1310 2201 (5vA + 5vB − 5vC − 5vD − 3)/2 (5vA + 5vC − 5vB − 5vD + 1)/2

2 2210 1301 (5vA + 5vB − 5vC − 5vD − 3)/2 (5vB + 5vC − 5vD − 5vA − 1)/2

3 2300 1211 (5vB + 5vC − 5vD − 5vA − 1)/2 (5vA + 5vC − 5vB − 5vD + 1)/2

44 1 0230 1121 (5vA + 5vB − 5vC − 5vD + 1)/2 (5vA + 5vC − 5vB − 5vD − 1)/2

2 1130 0221 (5vA + 5vB − 5vC − 5vD + 1)/2 (5vB + 5vC − 5vD − 5vA − 3)/2

3 1220 0131 (5vB + 5vC − 5vD − 5vA − 3)/2 (5vA + 5vC − 5vB − 5vD − 1)/2

45 1 0122 1013 (5vA + 5vB − 5vC − 5vD + 3)/2 (5vA + 5vC − 5vB − 5vD + 1)/2

2 1022 0113 (5vA + 5vB − 5vC − 5vD + 3)/2 (5vB + 5vC − 5vD − 5vA + 1)/2

3 1112 0023 (5vB + 5vC − 5vD − 5vA + 1)/2 (5vA + 5vC − 5vB − 5vD + 1)/2

(continued)
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Table 4.30 (continued)

No Axis
no

A′ B′ v1 v2

46 1 2111 3002 (5vA + 5vB − 5vC − 5vD − 1)/2 (5vA + 5vC − 5vB − 5vD − 1)/2

2 3011 2102 (5vA + 5vB − 5vC − 5vD − 1)/2 (5vB + 5vC − 5vD − 5vA + 3)/2

3 3101 2012 (5vB + 5vC − 5vD − 5vA + 3)/2 (5vA + 5vC − 5vB − 5vD − 1)/2

47 1 2120 3011 (5vA + 5vB − 5vC − 5vD − 1)/2 (5vA + 5vC − 5vB − 5vD − 3)/2

2 3020 2111 (5vA + 5vB − 5vC − 5vD − 1)/2 (5vB + 5vC − 5vD − 5vA + 1)/2

3 3110 2021 (5vB + 5vC − 5vD − 5vA + 1)/2 (5vA + 5vC − 5vB − 5vD − 3)/2

48 1 0311 1202 (5vA + 5vB − 5vC − 5vD − 1)/2 (5vA + 5vC − 5vB − 5vD + 3)/2

2 1211 0302 (5vA + 5vB − 5vC − 5vD − 1)/2 (5vB + 5vC − 5vD − 5vA − 1)/2

3 1301 0212 (5vB + 5vC − 5vD − 5vA − 1)/2 (5vA + 5vC − 5vB − 5vD + 3)/2

49 1 1130 2021 (5vA + 5vB − 5vC − 5vD + 1)/2 (5vA + 5vC − 5vB − 5vD − 3)/2

2 2030 1121 (5vA + 5vB − 5vC − 5vD + 1)/2 (5vB + 5vC − 5vD − 5vA − 1)/2

3 2120 1031 (5vB + 5vC − 5vD − 5vA − 1)/2 (5vA + 5vC − 5vB − 5vD − 3)/2

50 1 0212 1103 (5vA + 5vB − 5vC − 5vD + 1)/2 (5vA + 5vC − 5vB − 5vD + 3)/2

2 1112 0203 (5vA + 5vB − 5vC − 5vD + 1)/2 (5vB + 5vC − 5vD − 5vA + 1)/2

3 1202 0113 (5vB + 5vC − 5vD − 5vA + 1)/2 (5vA + 5vC − 5vB − 5vD + 3)/2

61 1 0221 1112 (5vA + 5vB − 5vC − 5vD + 1)/2 (5vA + 5vC − 5vB − 5vD + 1)/2

2 1121 0212 (5vA + 5vB − 5vC − 5vD + 1)/2 (5vB + 5vC − 5vD − 5vA − 1)/2

3 1211 0122 (5vB + 5vC − 5vD − 5vA − 1)/2 (5vA + 5vC − 5vB − 5vD + 1)/2

62 1 1121 2012 (5vA + 5vB − 5vC − 5vD + 1)/2 (5vA + 5vC − 5vB − 5vD − 1)/2

2 2021 1112 (5vA + 5vB − 5vC − 5vD + 1)/2 (5vB + 5vC − 5vD − 5vA + 1)/2

3 2111 1022 (5vB + 5vC − 5vD − 5vA + 1)/2 (5vA + 5vC − 5vB − 5vD − 1)/2

63 1 1211 2102 (5vA + 5vB − 5vC − 5vD − 1)/2 (5vA + 5vC − 5vB − 5vD + 1)/2

2 2111 1202 (5vA + 5vB − 5vC − 5vD − 1)/2 (5vB + 5vC − 5vD − 5vA + 1)/2

3 2201 1112 (5vB + 5vC − 5vD − 5vA + 1)/2 (5vA + 5vC − 5vB − 5vD + 1)/2

64 1 1220 2111 (5vA + 5vB − 5vC − 5vD − 1)/2 (5vA + 5vC − 5vB − 5vD − 1)/2

2 2120 1211 (5vA + 5vB − 5vC − 5vD − 1)/2 (5vB + 5vC − 5vD − 5vA − 1)/2

3 2210 1121 (5vB + 5vC − 5vD − 5vA − 1)/2 (5vA + 5vC − 5vB − 5vD − 1)/2

(3vA ∈ (1, 2]) ∧ (3vB ∈ [0, 1]) ∧ (3vC ∈ [0, 1]) ∧ (3vD ∈ [0, 1]) (4.14)

and, therefore, the point under consideration lies into the octahedron with the number
11 and vertices 2100, 1110, 1011, 2001, 2010, and 1101. If the third way for drawing
the axis is chosen, one can calculate v1 and v2 using Eqs. 4.15–4.16.

v1 = 3vB + 3vC − 3vD − 3vA + 1

2
(4.15)

v2 = 3vA + 3vC − 3vB − 3vD − 1

2
(4.16)
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Then if, for example,

(v1 > 0) ∧ (v2 > 0), (4.17)

then the following logical expression is true

(v1 ∈ (0, 1]) ∧ (v2 ∈ (0, 1]), (4.18)

and, therefore, the point under consideration lies into the first different small tetra-
hedron 2100, 1011, 1110, 2010 and one can find the result of piecewise linear inter-
polation using Eq. 4.19.

u
(

⇀

r
)

=
(
1 − 3vC

(
⇀

r
))

u2100 + 3vD
(

⇀

r
)
u1011 + v1

(
⇀

r
)
u1110 + v2

(
⇀

r
)
u2010 (4.19)

4.6 Tables and Algorithms for N = 4

Consider degree N = 4. 24 smaller tetrahedrons and 10 octahedrons are. If all of the
logical expressions corresponding to the rows 1, 2, …, I − 1 in Table 4.18 are false
and the logical expression corresponding to the row I in Table 4.18 is true, then the
logical expression corresponding to the row I in Table 4.19 is true and, therefore,
the point under consideration lies into the small tetrahedron I with vertices given
in Table 4.20 or into the octahedron I with the vertices given in Table 4.21. If it is
the tetrahedron I , one can find the relative volumes for its vertices in Table 4.22. If
it is the octahedron I , one of 3 ways for drawing the axis into it should be chosen.
Then one can calculate the appropriate v1 and v2 using the suitable formulae given in
Table 4.23. One can use the Table 4.7 in Sect. 4.4 to find a number of different small
tetrahedron into this octahedron I . If all of the logical expressions corresponding to
the rows 1, …, J − 1 in Table 4.7 are false and the logical expression corresponding
to the row J in Table 4.7 is true, then the logical expression corresponding to the
row J in Table 4.8 in Sect. 4.4 is true and, therefore, the point under consideration
lies into different small tetrahedron with the number J . One can find its vertices in
Tables 4.23 and 4.24 and corresponding relative volumes in Table 4.10 in Sect. 4.4
and in Table 4.24.

4.7 Tables and Algorithms for N = 5

Consider degree N = 5. 45 smaller tetrahedrons and 20 octahedrons are. If all of the
logical expressions corresponding to the rows 1, 2,…, I − 1 inTable 4.25 are false and
the logical expression corresponding to the row I in Table 4.25 is true, then the logical
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Table 4.31 The vertices C′, D′ of the different small tetrahedrons and the formulae for relative
volumes corresponding the appropriate vertices A′, B′ of the different small tetrahedrons for N = 5,
table of the sixth type

No Axis no Small
tetrahedron
no

C′ D′ vA′ vB′

17 1 1 4100 4010 4 − 5vA 5vD
2 4100 3101 5vC 1 − 5vB
3 3011 4010 5vB 1 − 5vC
4 3011 3101 1 − 5vD 5vA − 3

2 1 4100 3110 1 − 5vB 5vD
2 4100 4001 5vC 4 − 5vA
3 3011 3110 5vA − 3 1 − 5vC
4 3011 4001 1 − 5vD 5vB

3 1 3110 4010 1 − 5vC 5vD
2 3110 3101 5vA − 3 1 − 5vB
3 4001 4010 5vB 4 − 5vA
4 4001 3101 1 − 5vD 5vC

18 1 1 1400 1310 1 − 5vA 5vD
2 1400 0401 5vC 4 − 5vB
3 0311 1310 5vB − 3 1 − 5vC
4 0311 0401 1 − 5vD 5vA

2 1 1400 0410 4 − 5vB 5vD
2 1400 1301 5vC 1 − 5vA
3 0311 0410 5vA 1 − 5vC
4 0311 1301 1 − 5vD 5vB − 3

3 1 0410 1310 1 − 5vC 5vD
2 0410 0401 5vA 4 − 5vB
3 1301 1310 5vB − 3 1 − 5vA
4 1301 0401 1 − 5vD 5vC

19 1 1 1130 1040 1 − 5vA 5vD
2 1130 0131 5vC − 3 1 − 5vB
3 0041 1040 5vB 4 − 5vC
4 0041 0131 1 − 5vD 5vA

2 1 1130 0140 1 − 5vB 5vD
2 1130 1031 5vC − 3 1 − 5vA
3 0041 0140 5vA 4 − 5vC
4 0041 1031 1 − 5vD 5vB

3 1 0140 1040 4 − 5vC 5vD

(continued)
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Table 4.31 (continued)

No Axis no Small
tetrahedron
no

C′ D′ vA′ vB′

2 0140 0131 5vA 1 − 5vB
3 1031 1040 5vB 1 − 5vA
4 1031 0131 1 − 5vD 5vC − 3

20 1 1 1103 1013 1 − 5vA 5vD − 3

2 1103 0104 5vC 1 − 5vB
3 0014 1013 5vB 1 − 5vC
4 0014 0104 4 − 5vD 5vA

2 1 1103 0113 1 − 5vB 5vD − 3

2 1103 1004 5vC 1 − 5vA
3 0014 0113 5vA 1 − 5vC
4 0014 1004 4 − 5vD 5vB

3 1 0113 1013 1 − 5vC 5vD − 3

2 0113 0104 5vA 1 − 5vB
3 1004 1013 5vB 1 − 5vA
4 1004 0104 4 − 5vD 5vC

39 1 1 3200 3110 3 − 5vA 5vD
2 3200 2201 5vC 2 − 5vB
3 2111 3110 5vB − 1 1 − 5vC
4 2111 2201 1 − 5vD 5vA − 2

2 1 3200 2210 2 − 5vB 5vD
2 3200 3101 5vC 3 − 5vA
3 2111 2210 5vA − 2 1 − 5vC
4 2111 3101 1 − 5vD 5vB − 1

3 1 2210 3110 1 − 5vC 5vD
2 2210 2201 5vA − 2 2 − 5vB
3 3101 3110 5vB − 1 3 − 5vA
4 3101 2201 1 − 5vD 5vC

40 1 1 1310 1220 1 − 5vA 5vD
2 1310 0311 5vC − 1 3 − 5vB
3 0221 1220 5vB − 2 2 − 5vC
4 0221 0311 1 − 5vD 5vA

2 1 1310 0320 3 − 5vB 5vD
2 1310 1211 5vC − 1 1 − 5vA
3 0221 0320 5vA 2 − 5vC
4 0221 1211 1 − 5vD 5vB − 2

(continued)
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Table 4.31 (continued)

No Axis no Small
tetrahedron
no

C′ D′ vA′ vB′

3 1 0320 1220 2 − 5vC 5vD
2 0320 0311 5vA 3 − 5vB
3 1211 1220 5vB − 2 1 − 5vA
4 1211 0311 1 − 5vD 5vC − 1

41 1 1 1121 1031 1 − 5vA 5vD − 1

2 1121 0122 5vC − 2 1 − 5vB
3 0032 1031 5vB 3 − 5vC
4 0032 0122 2 − 5vD 5vA

2 1 1121 0131 1 − 5vB 5vD − 1

2 1121 1022 5vC − 2 1 − 5vA
3 0032 0131 5vA 3 − 5vC
4 0032 1022 2 − 5vD 5vB

3 1 0131 1031 3 − 5vC 5vD − 1

2 0131 0122 5vA 1 − 5vB
3 1022 1031 5vB 1 − 5vA
4 1022 0122 2 − 5vD 5vC − 2

42 1 1 2102 2012 2 − 5vA 5vD − 2

2 2102 1103 5vC 1 − 5vB
3 1013 2012 5vB 1 − 5vC
4 1013 1103 3 − 5vD 5vA − 1

2 1 2102 1112 1 − 5vB 5vD − 2

2 2102 2003 5vC 2 − 5vA
3 1013 1112 5vA − 1 1 − 5vC
4 1013 2003 3 − 5vD 5vB

3 1 1112 2012 1 − 5vC 5vD − 2

2 1112 1103 5vA − 1 1 − 5vB
3 2003 2012 5vB 2 − 5vA
4 2003 1103 3 − 5vD 5vC

43 1 1 2300 2210 2 − 5vA 5vD
2 2300 1301 5vC 3 − 5vB
3 1211 2210 5vB − 2 1 − 5vC
4 1211 1301 1 − 5vD 5vA − 1

2 1 2300 1310 3 − 5vB 5vD
2 2300 2201 5vC 2 − 5vA
3 1211 1310 5vA − 1 1 − 5vC

(continued)
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Table 4.31 (continued)

No Axis no Small
tetrahedron
no

C′ D′ vA′ vB′

4 1211 2201 1 − 5vD 5vB − 2

3 1 1310 2210 1 − 5vC 5vD
2 1310 1301 5vA − 1 3 − 5vB
3 2201 2210 5vB − 2 2 − 5vA
4 2201 1301 1 − 5vD 5vC

44 1 1 1220 1130 1 − 5vA 5vD
2 1220 0221 5vC − 2 2 − 5vB
3 0131 1130 5vB − 1 3 − 5vC
4 0131 0221 1 − 5vD 5vA

2 1 1220 0230 2 − 5vB 5vD
2 1220 1121 5vC − 2 1 − 5vA
3 0131 0230 5vA 3 − 5vC
4 0131 1121 1 − 5vD 5vB − 1

3 1 0230 1130 3 − 5vC 5vD
2 0230 0221 5vA 2 − 5vB
3 1121 1130 5vB − 1 1 − 5vA
4 1121 0221 1 − 5vD 5vC − 2

45 1 1 1112 1022 1 − 5vA 5vD − 2

2 1112 0113 5vC − 1 1 − 5vB
3 0023 1022 5vB 2 − 5vC
4 0023 0113 3 − 5vD 5vA

2 1 1112 0122 1 − 5vB 5vD − 2

2 1112 1013 5vC − 1 1 − 5vA
3 0023 0122 5vA 2 − 5vC
4 0023 1013 3 − 5vD 5vB

3 1 0122 1022 2 − 5vC 5vD − 2

2 0122 0113 5vA 1 − 5vB
3 1013 1022 5vB 1 − 5vA
4 1013 0113 3 − 5vD 5vC − 1

46 1 1 3101 3011 3 − 5vA 5vD − 1

2 3101 2102 5vC 1 − 5vB
3 2012 3011 5vB 1 − 5vC
4 2012 2102 2 − 5vD 5vA − 2

2 1 3101 2111 1 − 5vB 5vD − 1

2 3101 3002 5vC 3 − 5vA

(continued)
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Table 4.31 (continued)

No Axis no Small
tetrahedron
no

C′ D′ vA′ vB′

3 2012 2111 5vA − 2 1 − 5vC
4 2012 3002 2 − 5vD 5vB

3 1 2111 3011 1 − 5vC 5vD − 1

2 2111 2102 5vA − 2 1 − 5vB
3 3002 3011 5vB 3 − 5vA
4 3002 2102 2 − 5vD 5vC

47 1 1 3110 3020 3 − 5vA 5vD
2 3110 2111 5vC − 1 1 − 5vB
3 2021 3020 5vB 2 − 5vC
4 2021 2111 1 − 5vD 5vA − 2

2 1 3110 2120 1 − 5vB 5vD
2 3110 3011 5vC − 1 3 − 5vA
3 2021 2120 5vA − 2 2 − 5vC
4 2021 3011 1 − 5vD 5vB

3 1 2120 3020 2 − 5vC 5vD
2 2120 2111 5vA − 2 1 − 5vB
3 3011 3020 5vB 3 − 5vA
4 3011 2111 1 − 5vD 5vC − 1

48 1 1 1301 1211 1 − 5vA 5vD − 1

2 1301 0302 5vC 3 − 5vB
3 0212 1211 5vB − 2 1 − 5vC
4 0212 0302 2 − 5vD 5vA

2 1 1301 0311 3 − 5vB 5vD − 1

2 1301 1202 5vC 1 − 5vA
3 0212 0311 5vA 1 − 5vC
4 0212 1202 2 − 5vD 5vB − 2

3 1 0311 1211 1 − 5vC 5vD − 1

2 0311 0302 5vA 3 − 5vB
3 1202 1211 5vB − 2 1 − 5vA
4 1202 0302 2 − 5vD 5vC

49 1 1 2120 2030 2 − 5vA 5vD
2 2120 1121 5vC − 2 1 − 5vB
3 1031 2030 5vB 3 − 5vC
4 1031 1121 1 − 5vD 5vA − 1

2 1 2120 1130 1 − 5vB 5vD

(continued)
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Table 4.31 (continued)

No Axis no Small
tetrahedron
no

C′ D′ vA′ vB′

2 2120 2021 5vC − 2 2 − 5vA
3 1031 1130 5vA − 1 3 − 5vC
4 1031 2021 1 − 5vD 5vB

3 1 1130 2030 3 − 5vC 5vD
2 1130 1121 5vA − 1 1 − 5vB
3 2021 2030 5vB 2 − 5vA
4 2021 1121 1 − 5vD 5vC − 2

50 1 1 1202 1112 1 − 5vA 5vD − 2

2 1202 0203 5vC 2 − 5vB
3 0113 1112 5vB − 1 1 − 5vC
4 0113 0203 3 − 5vD 5vA

2 1 1202 0212 2 − 5vB 5vD − 2

2 1202 1103 5vC 1 − 5vA
3 0113 0212 5vA 1 − 5vC
4 0113 1103 3 − 5vD 5vB − 1

3 1 0212 1112 1 − 5vC 5vD − 2

2 0212 0203 5vA 2 − 5vB
3 1103 1112 5vB − 1 1 − 5vA
4 1103 0203 3 − 5vD 5vC

61 1 1 1211 1121 1 − 5vA 5vD − 1

2 1211 0212 5vC − 1 2 − 5vB
3 0122 1121 5vB − 1 2 − 5vC
4 0122 0212 2 − 5vD 5vA

2 1 1211 0221 2 − 5vB 5vD − 1

2 1211 1112 5vC − 1 1 − 5vA
3 0122 0221 5vA 2 − 5vC
4 0122 1112 2 − 5vD 5vB − 1

3 1 0221 1121 2 − 5vC 5vD − 1

2 0221 0212 5vA 2 − 5vB
3 1112 1121 5vB − 1 1 − 5vA
4 1112 0212 2 − 5vD 5vC − 1

62 1 1 2111 2021 2 − 5vA 5vD − 1

2 2111 1112 5vC − 1 1 − 5vB
3 1022 2021 5vB 2 − 5vC
4 1022 1112 2 − 5vD 5vA − 1

(continued)
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Table 4.31 (continued)

No Axis no Small
tetrahedron
no

C′ D′ vA′ vB′

2 1 2111 1121 1 − 5vB 5vD − 1

2 2111 2012 5vC − 1 2 − 5vA
3 1022 1121 5vA − 1 2 − 5vC
4 1022 2012 2 − 5vD 5vB

3 1 1121 2021 2 − 5vC 5vD − 1

2 1121 1112 5vA − 1 1 − 5vB
3 2012 2021 5vB 2 − 5vA
4 2012 1112 2 − 5vD 5vC − 1

63 1 1 2201 2111 2 − 5vA 5vD − 1

2 2201 1202 5vC 2 − 5vB
3 1112 2111 5vB − 1 1 − 5vC
4 1112 1202 2 − 5vD 5vA − 1

2 1 2201 1211 2 − 5vB 5vD − 1

2 2201 2102 5vC 2 − 5vA
3 1112 1211 5vA − 1 1 − 5vC
4 1112 2102 2 − 5vD 5vB − 1

3 1 1211 2111 1 − 5vC 5vD − 1

2 1211 1202 5vA − 1 2 − 5vB
3 2102 2111 5vB − 1 2 − 5vA
4 2102 1202 2 − 5vD 5vC

64 1 1 2210 2120 2 − 5vA 5vD
2 2210 1211 5vC − 1 2 − 5vB
3 1121 2120 5vB − 1 2 − 5vC
4 1121 1211 1 − 5vD 5vA − 1

2 1 2210 1220 2 − 5vB 5vD
2 2210 2111 5vC − 1 2 − 5vA
3 1121 1220 5vA − 1 2 − 5vC
4 1121 2111 1 − 5vD 5vB − 1

3 1 1220 2120 2 − 5vC 5vD
2 1220 1211 5vA − 1 2 − 5vB
3 2111 2120 5vB − 1 2 − 5vA
4 2111 1211 1 − 5vD 5vC − 1
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expression corresponding to the row I in Table 4.26 is true and, therefore, the point
under consideration lies into the small tetrahedron I with vertices given in Table 4.27
or into the octahedron I with the vertices given in Table 4.28. If it is the tetrahedron I ,
one can find the relative volumes for its vertices in Table 4.29. If it is the octahedron
I , one of 3 ways for drawing the axis into it should be chosen. Then one can calculate
the appropriate v1 and v2 using the suitable formulae given in Table 4.30. One can
use the Table 4.7 in Sect. 4.4 to find a number of the different small tetrahedron into
this octahedron I . If all of the logical expressions corresponding to the rows 1, …,
J − 1 in Table 4.7 are false and the logical expression corresponding to the row J in
Table 4.7 is true, then the logical expression corresponding to the row J in Table 4.8
in Sect. 4.4 is true and, therefore, the point under consideration lies into different
small tetrahedron with the number J . One can find its vertices in Tables 4.30 and
4.31 and corresponding relative volumes in Table 4.10 in Sect. 4.4 and in Table 4.31.

4.8 Conclusions

The analytical formulae for piecewise linear interpolation on the unstructured tetra-
hedral grids are suggested in this chapter. The cases of reference points used for
the polynomial interpolation discussed in Chap. 3 for order from 1 to 5 inclusively
are considered. These interpolation techniques can be used during the creation of a
new unstructured triangular or regular gird instead of previous one (as an element
of numerical method for finding 3D solutions on unstructured tetrahedral grids),
visualization of some space field, and pictures’ creation or converting. Also an ele-
ment for applying the hierarchical nested unstructured tetrahedral grids and formulae
for recalculation from local to global indices are discussed in Chap. 3. Analytical
formulae reduce the computational recourses, i.e. the software operation time and
amount of dynamic computer memory. In this chapter, one can find a vast amount of
analytical expressions joint into convenient tables ready for using. These analytical
expressions and tables help to achieve the great numerical modelling results in a case
of the deficiency of hardware resources.
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Chapter 5
Grid-Characteristic Method

Alena V. Favorskaya and Igor B. Petrov

Abstract In this chapter, a family of grid-characteristic methods for numerical sim-
ulation is considered. These methods are developed and used to solve a wide range
of applied problems: traumatology, ultrasound studies of the human body, ultra-
sonic operations, seismic exploration of oil and gas, seismic resistance of residential
and industrial facilities, non-destructive testing of railways and innovative materi-
als including composites, development territories with complex natural conditions,
shock effects on complex-shaped structures, and global seismic of various planets of
the solar system. Themethods allow to simulate the wave processes in heterogeneous
media of complex topology and dynamic process of destruction of these media. Also
these methods help to investigate clearly small heterogeneous features that repre-
sent breaks in the integration domain. Grid-characteristic methods are used to solve
the hyperbolic systems of equations describing the wave processes. In this chapter,
the elastic waves in isotropic and anisotropic cases and acoustic waves are consid-
ered. The method is well paralleled and actively implemented in software using the
high-performance computing systems.
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Horizontally transversal anisotropy · Boundary conditions · Interface conditions
Non-reflecting conditions

5.1 Introduction

Grid-characteristic method (GCM) [1–11] is widely used for numerical investigation
of dynamic wave processes, called Wave Logica [1–5], in heterogeneous anisotropic
[1, 2], isotropic elastic, and acoustic environments using regular [3, 4], tetrahedral
[5], triangular [6], and curvilinear [6, 7] meshes, different solutions schemes [8], and
direct modelling of the fractures [1] and their growth [3]. This family of numerical
methods is based on the grid-characteristic method [11], which is a finite-difference
method for the numerical solving of direct methods.

LeVeque provided a comprehensive overview of numerical modelling of hyper-
bolic systems of equations [12]. Direct methods, integral-equation methods, and
asymptotic methods applying for oil and gas seismic exploration problems were dis-
cussed by Carcione et al. [13]. In works [14–18], Nikitin et al. obtained averaged
effective models of layered and block media with varying degrees of accuracy and
various contact conditions on interlayer (interblock) boundaries for elastic, viscous,
and viscoplastic media and proposed numerical schemes for their solution. The study
of the dispersive behavior of spectral element method was done by Ainsworth and
Wajid [19]. Also, Ainsworth et al. studied the discontinuous Galerkin finite element
methods for the second-order wave equation [20]. Alford investigated the accuracy
of finite-difference modelling of the acoustic wave equation [21]. The accuracy of
heterogeneous staggered-grid finite-difference modelling of Rayleigh seismic waves
was improved by Bohlen and Saenger [22]. A 27-point scheme for a 3D frequency-
domain scalar wave equation based on an average-derivative method was suggested
by Chen [23]. Numerical methods for transient acoustic, elastic, and electromag-
netic waves were considered by Cohen and Gaunaurd [24]. Numerical dispersion of
spectral element methods of arbitrary order for the isotropic elastic wave equation
in two and three dimensions was studied by Seriani and Oliveira [25]. Saenger et al.
discussed a propagation of the elastic waves using a modified finite-difference grid
[26]. The accuracy of the finite-difference and finite-element schemes with respect
to P-wave to S-wave speed ratio was investigated by Moczo et al. [27]. A compre-
hensive introduction to finite-difference technique and its applications to earthquake
motion were provided by Moczo et al. [28]. Nonreflecting boundary conditions for
the wave equation were proposed by Hagstrom et al. [29–31] and independently by
Appelö and Kreiss for elastic waves [32].

The conventional approach of numerical modelling used in the reviewed above
papers includes the following items.

• First, the system of equations is chosen to solve.
• Second, the numerical method is chosen to solve this system.
• Third, the software is developed using the chosen method.
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There is the alternative approach for numerical experiments and investigation,
called grid-characteristic approach, which contains the following steps:

• First, the main physical effects are chosen to study in the numerical investigation.
• Second, the numerical method is chosen and applied to describe the main physical
effects.

• Third, the software is developed using this method that describes themain physical
effects.

The main difference between the grid-characteristic and conventional approaches
is in different targeting of a numerical method. In a case of conventional approach,
a numerical method is chosen to solve the system of equation. In a case of grid-
characteristic approach, a numerical method is chosen to describe the physical effects
having meaning in the investigation under consideration.

The grid-characteristic approach was used by Prof. Petrov and his scientific group
at Moscow Institute of Physics and Technology (MIPT) during last 30 years. Petrov
was a student of Prof. Belotserkovskii [33]. Also Petrov used a grid-characteristic
method for solving the practical problems as a student of Kholodov [11]. Thus, the
elaboration of this grid-characteristic method was directed by the needs of practical
investigations in different areas [1–10]. The main principles of the family of grid-
characteristic methods are discussed in this chapter. The comparison of the grid-
characteristic method and other forward modelling techniques was discussed by
Khokhlov et al. [6].

In Sect. 5.2, the widely used systems of equations are considered, i.e. the system
of equations describing the state of an infinitesimal volume of a continuous linear-
elastic medium in isotropic [3, 4] and anisotropic [1, 2, 34–37] cases and a system
describing the acoustic field [38]. Numerical modelling of the solutions of these
systems makes it possible to solve problems of a wide class mentioned in Chap.
2 and in this Chapter. Also these systems of equations are used during solving the
problems of seismic prospecting and exploration of oil and gas [1, 4] including the
shelf zones [4]. The solution of the system of equations describing a linear-elastic
media is calculated for describing the wave processes in rocks, soils, ice, and in
some cases in the oil-containing reservoirs. The system describing an acoustic field
is solved for modelling wave processes in water using approximation of an ideal fluid
[38] and in some cases in the oil-containing reservoirs. Also, a numerical solution
of the system of equations describing a linear-elastic medium in an isotropic case
enables to simulate seismic stability of ground and underground structures [3] and
ultrasonic non-destructive testing of railway track elements [39]. The solution of the
system of equations describing a linear-elastic medium in isotropic and anisotropic
cases makes it possible to investigate composite materials as shown in Chap. 6.

In Sect. 5.3, a family of grid-characteristic numerical methods for the solution
of hyperbolic systems of equations is considered. This family of numerical methods
can be applied on different structured [3, 4] and unstructured (triangular [6] and
tetrahedral [5]) meshes. Also, this family of numerical methods might be used to
solve different system of equations, including the systems describing the state con-
tinuous linear-elastic medium [1–10, 13], including an anisotropic case [1, 34–37],

https://doi.org/10.1007/978-3-319-76201-2_2
https://doi.org/10.1007/978-3-319-76201-2_6
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and acoustic field [38]. It should be noted that adding a heterogeneous structure and
taking into account dynamic delamination allows to describe quite accurately a wide
class of natural phenomena with a linear-elastic case [1–10, 39]. One can see some
examples in Chap. 6. The study on approximation of this family of grid-characteristic
methods on the unstructured triangular and tetrahedral grids is given in [8]. The study
on stability of solution schemes, into which this family of methods is transformed in
the a one-dimensional case, is done in [8] as well.

In Sect. 5.4, the boundary and interface conditions preserving the order of the
difference scheme that is used for calculating interior points are considered. Bound-
ary conditions of given traction, given velocity, mixed and non-reflecting boundary
conditions, the boundary conditions using imaginary points [3], interface conditions
of continuity of the velocity and traction, free sliding interface conditions, inter-
face conditions of dynamic friction [9] might be used during solving the system of
equations that describes elastic wave including an anisotropic case.

Boundary conditions with a given normal projection of the boundary velocity and
given pressure are considered for a case of the acoustic field. The interface conditions
are also considered. The contact conditions on the interface between the elastic and
acoustic layers are discussed in [4]. The contact conditions at the boundaries of the
transition between hierarchical grids with different fineness might be used as well
[5]. The contact conditions at the interface of the sub-domain, in which the grid-
characteristic method is used, and the sub-domain, in which a Smoothed Particles
Hydrodynamics (SPH) method is used are discussed in [10]. They are called as a
contact condition for the combined GCM-SPH method [10].

Section 5.5 concludes of the Chapter.

5.2 Systems of Equations Describing Wave Processes

In this Section, the systems of equations describing the wave processes used to solve
the problems mentioned above are considered. The general case of anisotropic elas-
tic waves, orthorhombic anisotropy, vertical-transversal anisotropy, and horizontal-
transversal anisotropy are discussed in Sects. 5.2.1–5.2.4, respectively. Two last types
of anisotropy are widely used for modelling the seismic waves into geological media
and composite materials. In Sect. 5.2.5, a system of equations describing elastic
waves is considered, while the acoustic waves are discussed in Sect. 5.2.6.

5.2.1 System of Equations Describing Anisotropic Elastic
Waves

The condition of an infinitesimal volume of the continuous linear-elastic anisotropic
medium is described by the Eqs. 5.1, and 5.2 [1, 34–37].

https://doi.org/10.1007/978-3-319-76201-2_6
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ρ (x, y, z) ∂t vi (x, y, z, t) �
∑

j

∂ jσi j (x, y, z, t) (5.1)

∂tσi j (x, y, z, t) �
∑

k

∑

l

Ci j,kl (x, y, z) (∂kvl (x, y, z, t) + ∂l vk (x, y, z, t)) (5.2)

In Eqs. 5.1, and 5.2 and further ∂t a (x, y, z, t) ≡ ∂a(x,y,z,t)
∂t is the partial derivative

of the field a (x, y, z, t) with respect to t. In Eqs. 5.1, and 5.2, the indices near
components of vectors and tensors are varied from 1 to 3. In Eqs. 5.1, 5.2 and further,
t is the time, x, y, z are the coordinates, ρ (x, y, z) is the density of the material,
⇀

v (x, y, z, t) is the velocity of motion, σ (x, y, z, t) is the symmetric Cauchy stress
tensor, Ci j,kl (x, y, z) is the tensor of elastic constants of the fourth rank given by
Eq. 5.3.

(5.3)

Ci j,kl � ci,kδi jδkl +
3∑

m�1

ci,m+3δi j |εmkl | +
3∑

m�1

cm+3,k

∣∣εmi j

∣∣δkl

+
3∑

m�1

3∑

n�1

cm+3,n+3

∣∣εmi j

∣∣ |εnkl |

In Eq. 5.3 and further, δi j are the components of a unit tensor of the second rank,
εmi j are the components of an absolutely antisymmetric unit tensor of the third rank.

The coefficients of the fourth-rank elastic constants tensor are often written in a
view of matrix 6 × 6 provided by Eq. 5.4.

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(5.4)

The correspondence between the coefficients of the structure given by Eq. 5.4 and
the tensor in Eq. 5.3 can be written by Eqs. 5.5–5.13, where the numbers from the
structure (Eq. 5.4) are written on the left side and the pairs of indices of the tensor
(Eq. 5.3) are written on the right side.

1 ↔ 11 (5.5)

2 ↔ 22 (5.6)

3 ↔ 33 (5.7)

4 ↔ 23 (5.8)

4 ↔ 32 (5.9)
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5 ↔ 13 (5.10)

5 ↔ 31 (5.11)

6 ↔ 12 (5.12)

6 ↔ 21. (5.13)

5.2.2 Case of Orthorhombic Anisotropy

Let OXY be a plane of symmetry. Then the components of the tensor of elastic
constants c14, c15, c24, c25, c34, c35, c46, c56 given in this Cartesian coordinate system
OXYZ are equal to zero as written in Eq. 5.14.

c14 � c15 � c24 � c25 � c34 � c35 � c46 � c56 � 0 (5.14)

A structure given by Eq. 5.4 in accordance with Eq. 5.14 is written in a view of
Eq. 5.15.

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 c12 c13 0 0 c16
c12 c22 c23 0 0 c26
c13 c23 c33 0 0 c36
0 0 0 c44 c45 0

0 0 0 c45 c55 0

c16 c26 c36 0 0 c66

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.15)

In a case of orthorhombic anisotropy, three mutually perpendicular axes of sym-
metry can be distinguished. If the Cartesian coordinate system, in which the tensor
of elastic constants is written, coincides with these axes, then the components of the
elastic constant tensor c14, c15, c24, c25, c34, c35, c46, c56, c16, c26, c36, c45 will be
equal to zero in accordance with Eq. 5.16.

c14 � c15 � c24 � c25 � c34 � c35 � c46 � c56 � c16 � c26 � c36 � c45 � 0
(5.16)

The structure given by Eq. 5.4 in accordance with Eq. 5.16 in this Cartesian
coordinate system will be strongly sparse and is written by Eq. 5.17.
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⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.17)

5.2.3 Case of Vertical-Transversal Anisotropy

A particular case of orthorhombic anisotropy is the vertical-transversal anisotropy.
In a case of vertically transversal anisotropy, the components of the tensor of elastic
constants c14, c15, c24, c25, c34, c35, c46, c56,c16, c26, c36, c45 are being equal to zero
in accordance with Eq. 5.18.

c14 � c15 � c24 � c25 � c34 � c35 � c46 � c56 � c16 � c26 � c36 � c45 � 0
(5.18)

The components of the elastic tensor c11, c22, c44, c55, c66, c12, c13, c23 are related
by Eqs. 5.19−5.22.

c11 � c22 (5.19)

c13 � c23 (5.20)

c44 � c55 (5.21)

c12 � c11 − 2c66 (5.22)

The structure given by Eq. 5.4 in accordance with Eqs. 5.18−5.22 is written by
Eq. 5.23.

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 c11 − 2c66 c13 0 0 0

c11 − 2c66 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.23)
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5.2.4 Case of Horizontal-Transversal Anisotropy

Another particular case of orthorhombic anisotropy is the horizontal-transversal
anisotropy. In a case of horizontally transversal anisotropy, the components of the
tensor of elastic constants c14, c15, c25, c34, c35, c46, c56, c16, c26, c36, c45 are equal to
zero in accordance with Eq. 5.24.

c14 � c15 � c24 � c25 � c34 � c35 � c46 � c56 � c16 � c26 � c36 � c45 � 0
(5.24)

The components of the elastic tensor c22, c33, c44, c55, c66,c12, c13, c23 are related
by Eqs. 5.25−5.28.

c22 � c33 (5.25)

c12 � c13 (5.26)

c55 � c66 (5.27)

c23 � c22 − 2c44 (5.28)

The structure given by Eq. 5.4 in accordance with Eqs. 5.24−5.28 is written by
Eq. 5.29.

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 c12 c12 0 0 0

c12 c22 c22 − 2c44 0 0 0

c12 c22 − 2c44 c22 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c55

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.29)

5.2.5 System of Equations Describing Isotropic Elastic Waves

The systemof equations describing the state of an infinitesimal element of the linearly
elastic medium is considered and given by Eqs. 5.30–5.31.

ρ (x, y, z) ∂t
⇀

v (x, y, z, t) � (∇ · σ (x, y, z, t))T (5.30)

∂tσ (x, y, z, t) � λ (x, y, z)
(
∇ · ⇀

v (x, y, z, t)
)
I

+ μ (x, y, z)

((
∇ :

⇀

v (x, y, z, t)
)
+
(
∇ :

⇀

v (x, y, z, t)
)T)

(5.31)
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Equation 5.30 is a local equation of motion. In Eqs. 5.30–5.31 and further, ∇ is
the vector-gradient given by Eq. 5.32.

∇ �
⎡

⎢⎣
∂x

∂y

∂z

⎤

⎥⎦ (5.32)

Equation 5.31 is obtained by differentiating the Hooke law with respect to time.
In Eq. 5.31, λ and μ are the Lame parameters that define the elastic properties of
the material, I is the unit tensor of the second rank. Equations 5.30–5.31 in a 2D
case take the same form but one should use the dependence from x and y instead of
dependence from x, y, and z. All 3D vectors and tensors of rank 2 should be changed
to 2D vectors and tensors of rank 2 as well.

It should be noted that the physical characteristics of a linearly elastic medium
are always described by two parameters, between which there is a one-to-one corre-
spondence. One can use Lame parameters. One can use the Poisson’s ratio and the
Young’s modulus. The speeds of longitudinal waves (P-waves) and transverse waves
(S-waves) can be used. These speeds are most convenient for describing geological
environments in the interests of seismic exploration of oil and gas.

In Eq. 5.31 and further,
⇀

a :
⇀

b is the tensor product of vectors
⇀

a and
⇀

b. The
components of this tensor product can be calculated using Eq. 5.33.

(
⇀

a :
⇀

b

)i j

� aib j (5.33)

The speed of P-waves in a linear-elastic medium can be found from Eq. 5.34.

cp �
√

λ + 2μ

ρ
(5.34)

The S-waves’ speed is calculated in accordance with Eq. 5.35.

cS �
√

μ

ρ
(5.35)

Notice that Eqs. 5.30, and 5.31 one can obtain from Eqs. 5.1, and 5.2 using the
structure from Eq. 5.4 in the form given by Eq. 5.36.
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⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ + 2μ λ λ 0 0 0

λ λ + 2μ λ 0 0 0

λ λ λ + 2μ 0 0 0

0 0 0 μ 0 0

0 0 0 0 μ 0

0 0 0 0 0 μ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.36)

Also, Eq. 5.31 may be represented in the form given by Eq. 5.37 using Eqs. 5.34,
and 5.35. This form is more convenient for wave processes modelling.

∂tσ � (
ρc2P − 2ρc2S

) (∇ · ⇀

v
)
I + ρc2S

((
∇ :

⇀

v
)
+
(
∇ :

⇀

v
)T)

(5.37)

5.2.6 System of Equations Describing Isotropic Acoustic
Waves

A system of equations describing the acoustic field is given by Eqs. 5.38–5.39. These
formulae describe the acoustic pressurefield p (x, y, z, t) and the velocity vector field
⇀

v (x, y, z, t). This system of equations might be used for the numerical simulation
of the liquid in the approximation of an ideal fluid [38].

ρ (x, y, z) ∂t
⇀

v (x, y, z, t) � −∇ p (x, y, z, t) (5.38)

∂t p (x, y, z, t) � −ρ (x, y, z) c (x, y, z)2
(
∇ · ⇀

v (x, y, z, t)
)

(5.39)

In Eq. 5.39, the speed of sound in an ideal fluid is denoted by c (x, y, z). Equa-
tions 5.38–5.39 in a 2D case take the same form but one should use the dependence
from x and y only instead of dependence from x, y, and z. All 3D vectors and tensors
of rank 2 should be changed to 2D vectors and tensors of rank 2 as well.

Notice that Eqs. 5.38–5.39 can be obtained fromEqs. 5.1 to 5.2 using the structure
from Eq. 5.4 in the form given by Eq. 5.40.

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

λ λ λ 0 0 0
λ λ λ 0 0 0
λ λ λ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(5.40)
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Also notice that Eqs. 5.38, and 5.39 are derived from Eqs. 5.30, and 5.31 using
the formulae given in Eqs. 5.41−5.43 for a 3D case and Eqs. 5.41, 5.42, and 5.44 in
a 2D case.

cP � c (5.41)

cS � 0 (5.42)

σ �
⎛

⎜⎝
−p/3 0 0

0 −p/3 0

0 0 −p/3

⎞

⎟⎠ (5.43)

σ �
(

−p/2 0

0 −p/2

)
(5.44)

5.3 Grid-Characteristic Method Describing

The main aspects of the software algorithm for grid-characteristic method are dis-
cussed at Sect. 5.3.1. The general statements of grid-characteristic methods are
presented in Sect. 5.3.2. In the general case, the grid-characteristic methods for
anisotropic linear-elastic media are described in Sect. 5.3.3. Grid-characteristic
method for a case of orthorhombic anisotropic elastic waves is discussed in
Sect. 5.3.4. The method for the isotropic case of linear-elastic media is considered
in Sect. 5.3.5. The method for a case of acoustic waves one can find in Sect. 5.3.6.

5.3.1 Scheme of the Algorithm for Grid-Characteristic
Method Using

In order to diminish the amount of Random Access Memory (RAM) needed for
calculations, two layers of coordinate mesh are used. Denote them as Array0 and
Array1. Array0 is also called n time layer. Array1 is also called n + 1 time layer.
One can use the following algorithm to perform the calculations. One step of this
algorithm is called “time-step”. It is characterized by a time moment t varying from
0 to T using time step τ .

Time step 0. t = 0.
0.0. The initial conditions giving unknown values at the zero time moment in all

region of integration are used to fill Array0.
0.1. Array0 might be written to the hard disk as unknown values for (x, y, z, 0).
Time step 1. t � τ .
1.0. The data in the Array1 are calculated for the X-direction in the inner points

using the data in the Array0.
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1.1. The data in the Array1 are corrected in the points placed at the boundaries and
interfaces for the X-direction using information about boundary conditions, interface
conditions, and non-zero external force.

1.2. Array0 = Array1.
1.3. The data in the Array1 are calculated for the Y-direction in the inner points

using the data in the Array0.
1.4. The data in the Array1 are corrected in the points placed at the boundaries and

interfaces for the Y-direction using information about boundary conditions, interface
conditions, and non-zero external force.

1.5. Array0 = Array1.
1.6. The data in the Array1 are calculated for the Z-direction in the inner points

using the data in the Array0.
1.7. The data in the Array1 are corrected in the points placed at the boundaries and

interfaces for the Z-direction using information about boundary conditions, interface
conditions, and non-zero external force.

1.8. Array0 = Array1.
1.9. Array0 might be written to the hard disk as unknown values for (x, y, z, τ ).
Time step n. t � nτ .
n.0. The data in the Array1 are calculated for the X-direction in the inner points

using the data in the Array0.
n.1. The data in the Array1 are corrected in the points placed at the boundaries and

interfaces for the X-direction using information about boundary conditions, interface
conditions, and non-zero external force.

n.2. Array0 = Array1.
n.3. The data in the Array1 are calculated for the Y-direction in the inner points

using the data in the Array0.
n.4. The data in the Array1 are corrected in the points placed at the boundaries and

interfaces for the Y-direction using information about boundary conditions, interface
conditions, and non-zero external force.

n.5. Array0 = Array1.
n.6. The data in the Array1 are calculated for the Z-direction in the inner points

using the data in the Array0.
n.7. The data in the Array1 are corrected in the points placed at the boundaries and

interfaces for the Z-direction using information about boundary conditions, interface
conditions, and non-zero external force.

n.8. Array0 = Array1.
n.9. Array0 might be written to the hard disk as unknown values for (x, y, z, nτ ).
The 2D case algorithm is developed similar to 3D case.
One can use different sourcemechanisms like boundary conditions, external force,

or initial conditions.
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5.3.2 General Statements of Grid-Characteristic Methods

At each time step the arbitrary directions (ξ1, ξ2, ξ3) in a 3D case or (ξ1, ξ2) in a 2D
case, the basis are chosen in a case of unstructured triangular or tetrahedral grids.
These newcoordinate systemsmake it possible to ensure the isotropy of the numerical
method. Note that these new directions coincide with OX, OY, and OZ axes in a 3D
case or with OX and OY axes in a 2D case using the regular or curvilinear hexahedral
meshes.

A system of hyperbolic type for a two-dimensional case in this new coordinate
system is given by Eq. 5.45.

⇀

qt + A2D
1

⇀

qξ1
+ A2D

2
⇀

qξ2
� 0 (5.45)

A system of hyperbolic type for a three-dimensional case in this new coordinate
system is given by Eq. 5.46.

⇀

qt + A3D
1

⇀

qξ1
+ A3D

2
⇀

qξ2
+ A3D

3
⇀

qξ3
� 0 (5.46)

Further splitting in two or three directions is carried out. One can obtain the system
given in Eq. 5.47 for each direction.

⇀

qt + A1
⇀

qξ1
� 0 (5.47)

Equations 5.48, 5.49 are valid for 2D and 3D cases, respectively, for the system
of equations given by Eq. 5.47.

⇀

q (ξ1, ξ2, t + τ) �
I∑

i�1

X2D,1
i

⇀

q
(
ξ1 − c2D,1

i τ, ξ2, t
)

(5.48)

⇀

q (ξ1, ξ2, ξ3, t + τ) �
I∑

i�1

X3D,1
i

⇀

q
(
ξ1 − c3D,1

i τ, ξ2, ξ3, t
)

(5.49)

In Eq. 5.47 and further,A1 is the matrixA2D
1 for a 2D case and matrixA3D

1 for a 3D
case, respectively. In Eq. 5.48,X2D,1

i are thematrices expressed in terms of thematrix
A2D

1 components and given further for all considered systems of equations, c2D,1
i are

the eigenvalues of the matrix A2D
1 . In Eq. 5.49, X3D,1

i are the matrices expressed in
terms of the matrix A3D

1 components and given further for all considered systems
of equations, c3D,1

i are the eigenvalues of the matrix A3D
1 . In Eqs. 5.48, 5.49, I is

a number of matrix A1 eigenvalues. Let the matrix A1 have a set of I + positive
eigenvalues, a set of I− negative eigenvalues, and a set of I 0 zero ones.

For thematrixX1
i representedbothmatricesX2D,1

i andX3D,1
i , the following relation

given by Eq. 5.50 is satisfied.
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I∑

i�1

X1
i � I (5.50)

Thus, one can express the matrices X1
i corresponding to zero eigenvalues using

the following Eq. 5.51.

∑

i∈I 0
X1

i � I −
∑

i∈I 0+
X1

i −
∑

i∈I−
X1

i (5.51)

Taking into account Eqs. 5.48, 5.49, their equivalents are obtained and given by
Eqs. 5.52, 5.53, respectively.

⇀

q (ξ1, ξ2, t + τ) � ⇀

q (ξ1, ξ2, t) +
∑

i∈I +∪I−
X2D,1

i

(
⇀

q
(
ξ1 − c2D,1

i τ, ξ2, t
)

− ⇀

q (ξ1, ξ2, t)
)

(5.52)
⇀

q (ξ1, ξ2, ξ3, t + τ) � ⇀

q (ξ1, ξ2, ξ3, t)

+
∑

i∈I +∪I−
X3D,1

i

(
⇀

q
(
ξ1 − c2D,1

i τ, ξ2, ξ3, t
)

− ⇀

q (ξ1, ξ2, ξ3, t)
)

(5.53)

The matrix A1 has a set of eigenvectors. Thus, it can be represented as Eq. 5.54.

A1 � (
�1)−1

�1�1 (5.54)

In Eq. 5.54,
(
�1)−1

is the matrix composed of eigenvectors of the matrix A1, �
1

is the diagonal matrix, whose elements are the eigenvalues of the matrix A1.
Formulae 5.52 and 5.53 can also be divided into three stages. At the first stage,

a multiplication of all unknown values
⇀

q (ξ1, ξ2, t) or
⇀

q (ξ1, ξ2, ξ3, t) stored on the n
time layer by the matrix �1 is performed using Eqs. 5.55, 5.56.

⇀
ω (ξ1, ξ2, t) � �1⇀

q (ξ1, ξ2, t) (5.55)
⇀
ω (ξ1, ξ2, ξ3, t) � �1⇀

q (ξ1, ξ2, ξ3, t) (5.56)

At the second stage, the following expressions given by Eqs. 5.57, 5.58 for the
2D and 3D cases, respectively, should be carried out.

⇀
ω (ξ1, ξ2, t + τ) � ⇀

ω (ξ1, ξ2, t) +
∑

i∈I +∪I−

⇀
ω
(
ξ1 − c2D,1

i τ, ξ2, t
)

− ⇀
ω (ξ1, ξ2, t)

(5.57)
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⇀
ω (ξ1, ξ2, ξ3, t + τ) � ⇀

ω (ξ1, ξ2, ξ3, t)

+
∑

i∈I +∪I−

⇀
ω
(
ξ1 − c3D,1

i τ, ξ2, ξ3, t
)

− ⇀
ω (ξ1, ξ2, ξ3, t) (5.58)

At the third stage, a multiplication of all unknown values
⇀

q (ξ1, ξ2, t) or
⇀

q (ξ1, ξ2, ξ3, t) stored on the n + 1 time layer by the matrix �1 is performed using
Eqs. 5.59, 5.60. Thus, n.0 stage of the algorithm discussed in Sect. 5.3.1 is done.

⇀

q (ξ1, ξ2, ξ3, t) � (
�1)−1 ⇀

ω (ξ1, ξ2, ξ3, t) (5.59)
⇀

q (ξ1, ξ2, ξ3, t + τ) � (
�1)−1 ⇀

ω (ξ1, ξ2, ξ3, t + τ) (5.60)

The use of Eqs. 5.59, 5.60 is equivalent for solving the following independent
transport equations given by Eq. 5.61.

(ωi )t + c1i (ωi )ξ1 � 0 (5.61)

Using a high order interpolation on the unstructured triangular or tetrahedral grids
(Chaps. 2–4) into Eqs. 5.57, 5.58, respectively, one can compete the stage n.0 apply-
ing the unstructured meshes. Using the regular grids, one-dimensional independent
transport Eqs. 5.61 are solved to perform the stage n.0. The stages n.3 and n.6 are per-
formed similarly. For example, in order to solve Eq. 5.61 in a case of regular meshes
one can use the numerical scheme given by the Eq. 5.62 for positive eigenvalues c1i
and by the Eq. 5.63 for negative eigenvalues c1i .

(ωi )
n+1
m � (ωi )

n
m +

1

6

c1i τ

h

(
6 (ωi )

n
m−1 − 3 (ωi )

n
m − 2 (ωi )

n
m+1 − (ωi )

n
m−2

)

+
1

2

(
c1i τ

h

)2 (
(ωi )

n
m−1 − 2 (ωi )

n
m + (ωi )

n
m+1

)

+
1

6

(
c1i τ

h

)3 (
(ωi )

n
m−2 − 3 (ωi )

n
m−1 + 3 (ωi )

n
m − (ωi )

n
m+1

)
(5.62)

(ωi )
n+1
m � (ωi )

n
m +

1

6

c1i τ

h

(
6 (ωi )

n
m+1 − 3 (ωi )

n
m − 2 (ωi )

n
m−1 − (ωi )

n
m+2

)

+
1

2

(
c1i τ

h

)2 (
(ωi )

n
m+1 − 2 (ωi )

n
m + (ωi )

n
m−1

)

+
1

6

(
c1i τ

h

)3 (
(ωi )

n
m+2 − 3 (ωi )

n
m+1 + 3 (ωi )

n
m − (ωi )

n
m−1

)
(5.63)

In Eqs. 5.62, 5.63, an index n corresponds to time coordinate t. Index m and step
h correspond to spatial coordinate ξ1.

https://doi.org/10.1007/978-3-319-76201-2_2
https://doi.org/10.1007/978-3-319-76201-2_4
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5.3.3 Grid-Characteristic Methods for Anisotropic Elastic
Waves in the General Case

The vector of unknowns appearing in Eq. 5.46 is given by Eq. 5.64.

⇀

q �
[

⇀

v
σ

]
�

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
v2
v3
σ11

σ22

σ33

σ23

σ13

σ12

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.64)

In the Eq. 5.46 the matrices A1, A2, A3, are given by Eqs. 5.65−5.67.

A1 � −

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
ρ
0 0 0 0 0

0 0 0 0 0 0 0 0 1
ρ

0 0 0 0 0 0 0 1
ρ
0

c11 c16 c15 0 0 0 0 0 0

c12 c26 c25 0 0 0 0 0 0

c13 c36 c35 0 0 0 0 0 0

c14 c46 c45 0 0 0 0 0 0

c15 c56 c55 0 0 0 0 0 0

c16 c66 c56 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.65)

A2 � −

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 1
ρ

0 0 0 0 1
ρ
0 0 0 0

0 0 0 0 0 0 1
ρ
0 0

c16 c12 c14 0 0 0 0 0 0

c26 c22 c24 0 0 0 0 0 0

c36 c23 c34 0 0 0 0 0 0

c46 c24 c44 0 0 0 0 0 0

c56 c25 c45 0 0 0 0 0 0

c66 c26 c46 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.66)
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A3 � −

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 1
ρ
0

0 0 0 0 0 0 1
ρ
0 0

0 0 0 0 0 1
ρ
0 0 0

c15 c14 c13 0 0 0 0 0 0

c25 c24 c23 0 0 0 0 0 0

c35 c34 c33 0 0 0 0 0 0

c45 c44 c34 0 0 0 0 0 0

c55 c45 c35 0 0 0 0 0 0

c56 c46 c36 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.67)

It can be shown that for each pair of selected directions three types of waves can
be distinguished. It was proved that in order to find the eigenvalues of the matrix A1

given by Eq. 5.65 it is necessary to solve the cubic Eq. 5.68.
1

ρ3

(
c11c

2
56 + c55c

2
16 + c66c

2
15 − c11c55c66 − 2c15c16c56

)

+
1

ρ2

(
c11c55 + c11c66 + c55c66 − c215 − c216 − c256

)
β − 1

ρ
(c11 + c55 + c66) β2 + β3 � 0

(5.68)

Also, it was proved that Eq. 5.68 has three real positive roots denoted as β11, β12,
and β13. The eigenvalues of the matrix A1 given by Eq. 5.65 are represented by the
following set given in Eq. 5.69.

{√
β11,−

√
β11,

√
β12,−

√
β12,

√
β13,−

√
β13, 0, 0, 0

}
(5.69)

It was shown that for each pair of selected directions it is possible to distinguish
three types of waves. It was proved that to find the eigenvalues of the matrixA2 given
by Eq. 5.66 it is necessary to solve the following cubic Eq. 5.70.

1

ρ3

(
c22c

2
46 + c44c

2
26 + c66c

2
24 − c22c44c66 − 2c24c26c46

)

+
1

ρ2

(
c22c44 + c22c66 + c44c66 − c224 − c226 − c246

)
β − 1

ρ
(c22 + c44 + c66) β2 + β3 � 0

(5.70)

It was proved that Eq. 5.70 has three real positive roots. Denote them as β21,
β22, and β23. The eigenvalues of the matrix A2 from Eq. 5.66 are represented by the
following set given in Eq. 5.71.

{√
β21,−

√
β21,

√
β22,−

√
β22,

√
β23,−

√
β23, 0, 0, 0

}
(5.71)



134 A. V. Favorskaya and I. B. Petrov

It was shown that for each pair of selected directions, three types of waves can be
distinguished. It was proved that to find the eigenvalues of the matrix A3 given by
Eq. 5.67 it is necessary to solve the following cubic Eq. 5.72.

1

ρ3

(
c33c

2
45 + c44c

2
35 + c55c

2
34 − c33c44c55 − 2c34c35c45

)

+
1

ρ2

(
c33c44 + c33c55 + c44c55 − c234 − c235 − c245

)
β − 1

ρ
(c33 + c44 + c55)β

2 + β3 � 0

(5.72)

Also it was proved that Eq. 5.72 has three real positive roots. Denote them as β31,
β32, and β33. The eigenvalues of the matrix A3 given by Eq. 5.67 are represented by
the following set provided by Eq. 5.73.

{√
β31,−

√
β31,

√
β32,−

√
β32,

√
β33,−

√
β33, 0, 0, 0

}
(5.73)

5.3.4 Grid-Characteristic Methods for Orthorhombic
Anisotropic Elastic Waves

For the elastic constants tensor given by Eq. 5.15 with the coincidence of the
selected axes of the orthorhombic anisotropy with the axes of the coordinate system
(ξ1, ξ2, ξ3), the matrices A1, A2, A3 appearing in Eq. 5.46 take the following form
given by Eqs. 5.74−5.76. Also, the topology of the eigenvalues of the matrix for this
case will be considered in detail. It should be noted that if the axes do not coincide
with the axes of symmetry, the structure and the eigenvalues will return to the form
of an arbitrary form given in Sect. 5.3.3.

A1 � −

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
ρ
0 0 0 0 0

0 0 0 0 0 0 0 0 1
ρ

0 0 0 0 0 0 0 1
ρ
0

c11 0 0 0 0 0 0 0 0

c12 0 0 0 0 0 0 0 0

c13 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
0 0 c55 0 0 0 0 0 0

0 c66 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.74)
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A2 � −

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 1
ρ

0 0 0 0 1
ρ
0 0 0 0

0 0 0 0 0 0 1
ρ
0 0

0 c12 0 0 0 0 0 0 0

0 c22 0 0 0 0 0 0 0

0 c23 0 0 0 0 0 0 0

0 0 c44 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
c66 0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.75)

A3 � −

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 1
ρ
0

0 0 0 0 0 0 1
ρ
0 0

0 0 0 0 0 1
ρ
0 0 0

0 0 c13 0 0 0 0 0 0

0 0 c23 0 0 0 0 0 0

0 0 c33 0 0 0 0 0 0

0 c44 0 0 0 0 0 0 0

c55 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.76)

The eigenvalues of the matrix A1 (given by Eq. 5.74), A2 (given by Eq. 5.75), A3

(given by Eq. 5.76) are given by the following sets represented by Eqs. 5.77, 5.78,
5.79, respectively.

{√
c11
ρ

,−
√
c11
ρ

,

√
c55
ρ

,−
√
c55
ρ

,

√
c66
ρ

,−
√
c66
ρ

, 0, 0, 0

}
(5.77)

{√
c22
ρ

,−
√
c22
ρ

,

√
c44
ρ

,−
√
c44
ρ

,

√
c66
ρ

,−
√
c66
ρ

, 0, 0, 0

}
(5.78)

{√
c33
ρ

,−
√
c33
ρ

,

√
c44
ρ

,−
√
c44
ρ

,

√
c55
ρ

,−
√
c55
ρ

, 0, 0, 0

}
(5.79)

In Fig. 5.1, the interpretation of all wave propagation speeds in a case of
orthorhombic anisotropy is presented. Three mutually perpendicular axes of sym-
metry 1, 2 and 3 are presented. These axes also define a Cartesian coordinate system,
in which the elastic constants tensor presented by Eq. 5.15 is given.

Three cases of wave propagating are considered in this Section:

1. Along the 1-direction. The longitudinal waves propagate with the speed
√

c11
ρ
.

The transverse waves propagate with the speed
√

c66
ρ
, the motion of medium in
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Fig. 5.1 The speeds of propagation of various types of seismic waves in amediumwith orthorhom-
bic anisotropy

which is directed along the direction 2. The transverse waves propagate with the

speed
√

c55
ρ
, the motion of medium in which is directed along the direction 3.

2. Along the 2-direction. The longitudinal waves propagate with the speed
√

c22
ρ
.

The transverse waves propagate with the speed
√

c44
ρ
, the motion of medium in

which is directed along the direction 3. The transverse waves propagate with the

speed
√

c66
ρ
, the motion of medium in which is directed along the direction 1.

3. Along the 3-direction. The longitudinal waves propagate with the speed
√

c33
ρ
.

The transverse waves propagate with the speed
√

c55
ρ
, the motion of medium in

which is directed along the direction 1. The transverse waves propagate with the

speed
√

c44
ρ
, the motion of medium in which is directed along the direction 2.

In the case, when the axes of the coordinate system (ξ1, ξ2, ξ3) do not coincide
with the distinguished axes of the orthorhombic anisotropy under consideration,
the case of orthorhombic anisotropy will pass to the general case of anisotropy.

Vectors
(

⇀

e1,
⇀

e2,
⇀

e3
)
denote the basis of unit vectors directed along the coordinate
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axes (ξ1, ξ2, ξ3). Vectors
(

⇀

a1,
⇀

a2,
⇀

a3
)
denote a basis of unit vectors directed along

the distinguished axes of the orthorhombic anisotropy.
Let the following relations given by Eqs. 5.80, 5.81 hold for the vector

⇀

r .

⇀

r � re1
⇀

e1 + re2
⇀

e2 + re2
⇀

e3 (5.80)
⇀

r � ra1
⇀

a1 + ra2
⇀

a2 + ra2
⇀

a3 (5.81)

The following Eq. 5.82 is true in these conditions.
⎡

⎢⎢⎣

re1
re2
re2

⎤

⎥⎥⎦ � H

⎡

⎢⎢⎣

ra1
ra2
ra2

⎤

⎥⎥⎦ (5.82)

In Eq. 5.82, H is the transition matrix having components given by Eq. 5.83.

H �
⎡

⎢⎣
h11 h12 h13
h21 h22 h21
h31 h32 h33

⎤

⎥⎦ (5.83)

Let the elastic constants tensor be given by Eq. 5.15 in the coordinate system with

unit vectors
(

⇀

a1,
⇀

a2,
⇀

a3
)
. This tensor can be written by Eq. 5.84 in the coordinate

system (ξ1, ξ2, ξ3) with unit vectors
(

⇀

e1,
⇀

e2,
⇀

e3
)
.

cξ
αβ �

3∑

i�1

3∑

j�1

3∑

k�1

3∑

l�1

hm(α),i hn(α), j h p(β),khq(β),l cγ (i, j)ψ(k,l) (5.84)

Let the tensor be given by Eq. 5.3 in the general case. Let the structure be given by
Eq. 5.4 in the general case. Under these assumptions, the functions of the transition
in Eq. 5.84 from the indices of the components of the tensor to the indices into the
structure and back are given in accordance with Eqs. 5.5–5.13. Thus, Eq. 5.84 can
be expanded as written in Eq. 5.85.
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Ce
i jkl � (

h1i h1 j h1kh1l
)
c11 +

(
h2i h2 j h2kh2l

)
c22 +

(
h3i h3 j h3kh3l

)
c33

+
(
h2i h3 j h2kh3l + h2i h3 j h3kh2l + h3i h2 j h2kh3l + h3i h2 j h3kh2l

)
c44

+
(
h1i h3 j h1kh3l + h1i h3 j h3kh1l + h3i h1 j h1kh3l + h3i h1 j h3kh1l

)
c55

+
(
h1i h2 j h1kh2l + h1i h2 j h2kh1l + h2i h1 j h1kh2l + h2i h1 j h2kh1l

)
c66

+
(
h1i h1 j h2kh2l + h2i h2 j h1kh1l

)
c12 +

(
h1i h1 j h3kh3l + h3i h3 j h1kh1l

)
c13

+
(
h2i h2 j h3kh3l + h3i h3 j h2kh2l

)
c23

+
(
h1i h1 j h2kh3l + h1i h1 j h3kh2l + h2i h3 j h1kh1l + h3i h2 j h1kh1l

)
c14

+
(
h1i h1 j h1kh3l + h1i h1 j h3kh1l + h1i h3 j h1kh1l + h3i h1 j h1kh1l

)
c15

+
(
h1i h1 j h1kh2l + h1i h1 j h2kh1l + h1i h2 j h1kh1l + h2i h1 j h1kh1l

)
c16

+
(
h2i h2 j h2kh3l + h2i h2 j h3kh2l + h2i h3 j h2kh2l + h3i h2 j h2kh2l

)
c24

+
(
h1i h3 j h2kh2l + h2i h2 j h1kh3l + h2i h2 j h3kh1l + h3i h1 j h2kh2l

)
c25

+
(
h1i h2 j h2kh2l + h2i h1 j h2kh2l + h2i h2 j h1kh2l + h2i h2 j h2kh1l

)
c26

+
(
h2i h3 j h3kh3l + h3i h2 j h3kh3l + h3i h3 j h2kh3l + h3i h3 j h3kh2l

)
c34

+
(
h1i h3 j h3kh3l + h3i h1 j h3kh3l + h3i h3 j h1kh3l + h3i h3 j h3kh1l

)
c35

+
(
h1i h2 j h3kh3l + h2i h1 j h3kh3l + h3i h3 j h1kh2l + h3i h3 j h2kh1l

)
c36

+
(
h1i h3 j h2kh3l + h1i h3 j h3kh2l + h2i h3 j h1kh3l + h2i h3 j h3kh1l + h3i h1 j h2kh3l

+ h3i h1 j h3kh2l + h3i h2 j h1kh3l + h3i h2 j h3kh1l
)
c45

+
(
h1i h2 j h2kh3l + h1i h2 j h3kh2l + h2i h1 j h2kh3l + h2i h1 j h3kh2l + h2i h3 j h1kh2l

+ h2i h3 j h2kh1l + h3i h2 j h1kh2l + h3i h2 j h2kh1l
)
c46

+
(
h1i h2 j h1kh3l + h1i h2 j h3kh1l + h1i h3 j h1kh2l + h1i h3 j h2kh1l + h2i h1 j h1kh3l

+ h2i h1 j h3kh1l + h3i h1 j h1kh2l + h3i h1 j h2kh1l
)
c56 (5.85)

5.3.5 Grid-Characteristic Methods for Isotropic Elastic
Waves

Consider the direction ξ1 for definiteness. Let the vector
⇀

n bedirected along the chosen
direction and the vectors

⇀

n1 and
⇀

n2 (or only the vector
⇀

n1 in a two-dimensional case)
form the Cartesian coordinate system with this vector

⇀

n. The following symmetric
tensors of the second rank are introduced by Eq. 5.86.

Ni j � 1

2

(
ni⊗n j + n j⊗ni

)
(5.86)

In Eq. 5.86, vector
⇀

n0 means the vector
⇀

n. The vector of unknowns is given by
Eq. 5.64 for a three-dimensional case and by Eq. 5.87 for a two-dimensional case.
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⇀

q �
[

⇀

v
σ

]
�

⎡

⎢⎢⎢⎢⎣

v1
v2
σ11

σ22

σ12

⎤

⎥⎥⎥⎥⎦
(5.87)

The action of the matrixA1 on the vector of unknowns can be written by Eq. 5.88
both for 2D and 3D cases.

A1

[
⇀

v
σ

]
� −

⎡

⎢⎢⎣

1
ρ

(
σ · ⇀

n
)

λ
(

⇀

n · ⇀

v
)
I + μ

(
⇀

n⊗⇀

v +
⇀

v⊗⇀

n
)

⎤

⎥⎥⎦ (5.88)

Matrices A3D
1 , A3D

2 , A3D
3 have the same set of eigenvalues provided by Eq. 5.89.

{cP,−cP, cS,−cS, cS,−cS, 0, 0, 0} (5.89)

Matrices A2D
1 , A2D

2 also have the same set of eigenvalues given by Eq. 5.90.

{cP,−cP, cS,−cS, 0} (5.90)

The action of the matrix �1 on the vector of unknowns can be represented by
Eqs. 5.91, 5.92 in 2D and 3D cases, respectively.

⎡

⎢⎢⎢⎢⎣

ω1

ω2

ω3

ω4

ω5

⎤

⎥⎥⎥⎥⎦
� �1

[
⇀

v

σ

]
�

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⇀

n · ⇀

v − 1
cPρ

N00 ÷ σ

⇀

n · ⇀

v + 1
cPρ

N00 ÷ σ

⇀

n1 · ⇀

v − 1
cSρ

N01 ÷ σ

⇀

n1 · ⇀

v + 1
cSρ

N01 ÷ σ

(
N11 − λ

λ+2μN00

)
÷ σ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.91)



140 A. V. Favorskaya and I. B. Petrov

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω1

ω2

ω3

ω4

ω5

ω6

ω7

ω8

ω9

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� �1

[
⇀

v

σ

]
�

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⇀

n · ⇀

v − 1
cPρ

N00 ÷ σ

⇀

n · ⇀

v + 1
cPρ

N00 ÷ σ

⇀

n1 · ⇀

v − 1
cSρ

N01 ÷ σ

⇀

n1 · ⇀

v + 1
cSρ

N01 ÷ σ

⇀

n2 · ⇀

v − 1
cSρ

N02 ÷ σ

⇀

n2 · ⇀

v + 1
cSρ

N02 ÷ σ

N12 ÷ σ

(N11 − N22) ÷ σ
(
N11 + N22 − 2λ

λ+2μN00

)
÷ σ

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.92)

In a two-dimensional case, the action of the matrix (�1)
−1 on the vector ⇀

ω can be
represented by Eq. 5.93.

[
⇀
v

σ

]
� (�1)

−1 ⇀
ω

� 1

2

⎡

⎣ (ω1 + ω2)
⇀
n + (ω3 + ω4)

⇀
n1

(ω2 − ω1) (ρ (cP − c3)N00 + ρc3I) + 2ρcS (ω4 − ω3)N01 + 2ω5 (I − N00)

⎤

⎦

(5.93)

In a three-dimensional case, the action of the matrix (�1)
−1 on the vector ⇀

ω can
be represented by Eq. 5.94.
[

⇀

v

σ

]
� (�1)

−1 ⇀
ω

� 1

2

⎡

⎢⎢⎣
(ω1 + ω2)

⇀

n + (ω3 + ω4)
⇀

n1 + (ω5 + ω6)
⇀

n2
ρ (ω2 − ω1) ((cP − c3)N00 + c3I) + 2cSρ (ω4 − ω3)N01

+2cSρ (ω6 − ω5)N02 + 4ω7N12 + ω8 (N11 − N22) + ω9 (I − N00)

⎤

⎥⎥⎦

(5.94)

In Eqs. 5.93, 5.94, the quantity c3 is denoted in Eq. 5.95 and in Sect. 5.4.3.

c3 � λ

λ + 2μ
cP. (5.95)
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5.3.6 Grid-Characteristic Methods for Acoustic Waves

Also for definiteness, the direction ξ1 is considered. The vector of unknowns for a
three-dimensional case can be written by Eq. 5.96.

⇀

q �
[

⇀

v
p

]
�

⎡

⎢⎢⎣

v1
v2
v3
p

⎤

⎥⎥⎦ (5.96)

The vector of unknowns for a 3D case can be written by Eq. 5.97.

⇀

q �
[

⇀

v
p

]
�
⎡

⎣
v1
v2
p

⎤

⎦ (5.97)

The action of the matrixA1 on the vector of unknowns can be written by Eq. 5.98
both for 2D and 3D cases.

A1

[
⇀

v
p

]
�
⎡

⎢⎣
p
ρ

⇀

n

c2ρ
(

⇀

n · ⇀

v
)

⎤

⎥⎦ (5.98)

Matrices A3D
1 , A3D

2 , A3D
3 have the same set of eigenvalues:

{c,−c, 0, 0} . (5.99)

Matrices A2D
1 , A2D

2 also have the same set of eigenvalues:

{c,−c, 0} . (5.100)

In a two-dimensional case, the action of the matrix �1 on the vector of unknowns
can be represented by Eq. 5.101.

⎡

⎣
ω1

ω2

ω3

⎤

⎦ � �

[
⇀

v
p

]
�

⎡

⎢⎢⎢⎢⎣

⇀

n · ⇀

v + p
cρ

⇀

n · ⇀

v − p
cρ

⇀

n1 · ⇀

v

⎤

⎥⎥⎥⎥⎦
(5.101)

In a three-dimensional case, the action of thematrix�1 on the vector of unknowns
can be represented by Eq. 5.102.
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⎡

⎢⎢⎣

ω1

ω2

ω3

ω4

⎤

⎥⎥⎦ � �

[
⇀

v
p

]
�

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

⇀

n · ⇀

v + p
cρ

⇀

n · ⇀

v − p
cρ

⇀

n1 · ⇀

v
⇀

n2 · ⇀

v

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(5.102)

In a two-dimensional case, the action of the matrix (�1)
−1 on the vector ⇀

ω can be
represented by Eq. 5.103.

[
⇀

v
p

]
� �−1⇀

ω � 1

2

[
(ω1 + ω2)

⇀

n + ω3
⇀

n1
cρ (ω1 − ω2)

]
(5.103)

In a three-dimensional case, the action of the matrix (�1)
−1 on the vector ⇀

ω can
be represented by Eq. 5.104.

[
⇀

v
p

]
� �−1⇀

ω � 1

2

[
(ω1 + ω2)

⇀

n + ω3
⇀

n1 + ω4
⇀

n2
cρ (ω1 − ω2)

]
(5.104)

5.4 Boundary and Interface Conditions

The family of grid-characteristic methods both on structured and unstructured tri-
angular and tetrahedral grids allows us to apply the most correct computational
algorithms on the boundaries and interfaces into the integration domain.

In this Section, main cases of boundary and interface conditions are discussed.
Other cases one can find in works [3–5, 9, 10]. The general propositions for boundary
and interface conditions calculation are discussed in Sect. 5.4.1. Calculation of the
boundary and interface conditions for a case of anisotropic elastic waves equations is
discussed in Sect. 5.4.2. The case of isotropic elastic waves is proposed in Sect. 5.4.3.
The case of acoustic waves is represented in Sect. 5.4.4.

5.4.1 General Provisions of Boundary and Interface
Conditions

Suppose that the boundary conditions are written by Eq. 5.105 in a matrix form.

D⇀

q (ξ1, ξ2, ξ3, t + τ) � ⇀

d (5.105)
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Fig. 5.2 The right side of the region of integration for the direction ξ1

In Eq. 5.105,
⇀

q (ξ1, ξ2, ξ3, t + τ) are the values of velocity components and stress
tensor at the next step of integration at the boundary point.

For each matrix A j , there are zero, positive, and negative eigenvalues. For each
direction there will be two types of correctors: for the left and right borders. This
means that in cases of anisotropic and isotropic elasticwave equations, 3 scalar values
and 2 scalar values given at the boundaries should be set for a three-dimensional case
and a two-dimensional case, respectively. In the cases of acoustic wave equations, 1
scalar value given at the boundaries should be set for both three-dimensional and two-
dimensional cases. In the cases of anisotropic and isotropic elastic wave equations,
6 scalar values given at the interfaces should be set for a three-dimensional case and
4 scalar values given at the interfaces should be set for a two-dimensional case. In
the cases of acoustic wave equations, 2 scalar values given at the interfaces should
be set for both three-dimensional and two-dimensional cases.

Suppose along the direction ξ1 the characteristics corresponding to negative eigen-
values of the matrix go outside the region of integration. This side is called the right
side of the region of integration for the direction ξ1 in accordance with Fig. 5.2.

Suppose along the direction ξ1 the characteristics corresponding to positive eigen-
values of the matrix go outside the region of integration. This side is called the left
side of the region of integration for the direction ξ1 in accordance with Fig. 5.3.

For definiteness, consider one of the sides of the region of integration and one
of directions (ξ1, ξ2, ξ3) for a 3D case and one of directions (ξ1, ξ2) in a 2D case.
Suppose that along the direction ξ1 the characteristics corresponding to negative
eigenvalues of the matrix go outside the region of integration. This side is called the
right side of the region of integration. Then, at the stage of calculating the internal
points in accordance with Eqs. 5.52, 5.53, the following vectors given in Eqs. 5.106,
5.107 will be calculated.
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Fig. 5.3 The left side of the region of integration for the direction ξ1

⇀

q (ξ1, ξ2, t + τ) � ⇀

q (ξ1, ξ2, t) +
∑

i∈I +
X2D,1

i

(
⇀

q
(
ξ1 − c2D,1

i τ, ξ2, t
)

− ⇀

q (ξ1, ξ2, t)
)

(5.106)
⇀

q (ξ1, ξ2, ξ3, t + τ) � ⇀

q (ξ1, ξ2, ξ3, t)

+
∑

i∈I +
X3D,1

i

(
⇀

q
(
ξ1 − c2D,1

i τ, ξ2, ξ3, t
)

− ⇀

q (ξ1, ξ2, ξ3, t)
)

(5.107)

The matrix �∗,out is composed of eigenvectors corresponding to negative eigen-
values. The action of the corrector at the boundary point is performed by the following
Eq. 5.108, where

⇀

rB is the given point at the boundary.

⇀

q
(

⇀

rB, t + τ
)

� F⇀

q
in (

⇀

rB, t + τ
)
+ �

⇀

d (5.108)

The condition given in Eq. 5.105 is satisfiedwith the same order of convergence as
the method used for solving systems of equations under consideration. This method
is given by Eqs. 5.48, 5.49 into the inner points of the modelling domain (region
of integration) and, accordingly, is using for finding values in Eqs. 5.52, 5.53. In
Eq. 5.108, the matrices� and F are calculated from the following Eqs. 5.109–5.110.

� � �∗,out
(
D�∗,out

)−1
(5.109)

F � I − �D (5.110)

In Eq. 5.109, the matrix
(
D�∗,out

)−1
is calculated in order the Eq. 5.111 to be

true.
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(
D�∗,out

)−1
D�∗,out � I. (5.111)

5.4.2 Boundary and Interface Conditions for Anisotropic
Elastic Waves

The boundary corrector with a given traction is considered. In this case, the condition
given by Eq. 5.105 takes the form represented in Eq. 5.112.

σ · ⇀

p � ⇀

f (5.112)

In Eq. 5.112,
⇀

f is the traction also called as the density of external forces and
being a given vector,

⇀

p is the outer normal to the boundary here and below. The
matrix D from Eq. 5.105 can be written by Eq. 5.113.

D �
⎡

⎢⎣
0 0 0 p1 0 0 0 p3 p2
0 0 0 0 p2 0 p3 0 p1
0 0 0 0 0 p3 p2 p1 0

⎤

⎥⎦ � D
(

⇀

p
)

(5.113)

The vector
⇀

d from Eq. 5.105 can be written by Eq. 5.114.

⇀

d �
⎡

⎢⎣
f1
f2
f3

⎤

⎥⎦ � ⇀

f � ⇀

d

(
⇀

f

)
(5.114)

The boundary corrector with the given boundary velocity is considered. In this
case, the condition in Eq. 5.105 takes the form represented by Eq. 5.115.

⇀

v � ⇀

V (5.115)

In Eq. 5.115,
⇀

V is the velocity of the boundary being a given vector. The matrix
D from Eq. 5.105 can be written by Eq. 5.116.

D �
⎡

⎣
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

⎤

⎦ (5.116)

The vector
⇀

d from Eq. 5.105 can be written by Eq. 5.117.
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⇀

d �
⎡

⎢⎣
V1

V2

V3

⎤

⎥⎦ � ⇀

d(
⇀

V ) � ⇀

V (5.117)

The boundary corrector of mixed boundary conditions with the given normal
projection of the boundary velocity and the non-zero given tangential component
of the traction is considered. In this case, the Eq. 5.105 takes the form given by
Eqs. 5.118, 5.119.

⇀

v · ⇀

p � Vp (5.118)

σ · ⇀

p � ⇀

f (5.119)

In Eq. 5.119,
⇀

f is given by Eq. 5.120.

⇀

f � ⇀

f τ +

((
⇀

f − ⇀

f τ

)
· ⇀

p

)
⇀

p (5.120)

In Eq. 5.118, Vp is the projection of the boundary velocity on the normal being

a given scalar. In Eq. 5.120,
⇀

f τ is the non-zero tangential component of the traction
being a given vector. The matrix D from Eq. 5.105 can be written by Eq. 5.121.

D �D
(

⇀

f τ ,
⇀

p

)
�
⎡

⎢⎣
s11 s12 s13 0 0 0

0 0 0 s11s31 s12s32 s13s33
0 0 0 s11s21 s12s22 s13s23

0 0 0
s12s33 + s13s32 s11s33 + s13s31 s11s32 + s12s31
s12s23 + s13s22 s11s23 + s13s21 s11s22 + s12s21

⎤

⎦ (5.121)

The vector
⇀

d from Eq. 5.105 can be written by Eq. 5.122.

⇀

d �
⎡

⎢⎣
Vp

0
fτ

⎤

⎥⎦ � ⇀

d

(
Vp,

⇀

f τ ,
⇀

p

)
(5.122)

In Eq. 5.121, the designation introduced in Eqs. 5.123−5.131 is used.

s11 � p1 (5.123)

s12 � p2 (5.124)

s13 � p3 (5.125)
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s21 � fτ1
fτ

� fτ1√
( fτ1)

2 + ( fτ2)
2 + ( fτ3)

2
(5.126)

s22 � fτ2
fτ

� fτ2√
( fτ1)

2 + ( fτ2)
2 + ( fτ3)

2
(5.127)

s23 � fτ3
fτ

� fτ3√
( fτ1)

2 + ( fτ2)
2 + ( fτ3)

2
(5.128)

s31 � p2 fτ3 − p3 fτ2√
( fτ1)

2 + ( fτ2)
2 + ( fτ3)

2
� s12s23 − s13s22 (5.129)

s32 � p3 fτ1 − p1 fτ3√
( fτ1)

2 + ( fτ2)
2 + ( fτ3)

2
� s13s21 − s11s23 (5.130)

s33 � p1 fτ2 − p2 fτ1√
( fτ1)

2 + ( fτ2)
2 + ( fτ3)

2
� s11s22 − s12s21 (5.131)

The boundary corrector of mixed boundary conditions with the given normal
projection of the boundary velocity and zero tangential component of the traction is
considered. In this case, the Eq. 5.105 takes the form of Eqs. 5.132, 5.133.

⇀

v · ⇀

p � Vp (5.132)

σ · ⇀

p � ⇀

f (5.133)

In Eq. 5.133,
⇀

f is given by Eq. 5.134.

⇀

f �
(

⇀

f · ⇀

p

)
⇀

p (5.134)

In Eq. 5.132, Vp is the projection of the boundary velocity on the normal being a

given scalar. The vector
⇀

d from Eq. 5.105 can be written by Eq. 5.135.

⇀

d �
⎡

⎢⎣
Vp

0
0

⎤

⎥⎦ � ⇀

d
(
Vp
)

(5.135)

A view of the matrix D depends on the vector of the normal. If p1 
� 0, then this
matrix takes the form represented by Eq. 5.136.
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D � D
(

⇀

p
)

�
⎡

⎢⎣
p1 p2 p3 0 0 0

0 0 0 −p1 p2 p1 p2 0

0 0 0 −p1 p3 0 p1 p3

0 0 0
p1 p3 p2 p3 (p1 p1 − p2 p2)

p1 p2 (p1 p1 − p3 p3) p2 p3

⎤

⎥⎦ (5.136)

If p2 
� 0, then the matrix D takes the form represented by Eq. 5.137.

D � D
(

⇀

p
)

�
⎡

⎢⎣
p1 p2 p3 0 0 0

0 0 0 p1 p2 −p1 p2 0

0 0 0 0 −p2 p3 p2 p3

0 0 0
−p1 p3 p2 p3 (p2 p2 − p1 p1)

(p2 p2 − p3 p3) p1 p2 −p1 p3

⎤

⎥⎦ (5.137)

If p3 
� 0, then the matrix D takes the form represented by Eq. 5.138.

D � D
(

⇀

p
)

�
⎡

⎢⎣
p1 p2 p3 0 0 0

0 0 0 p1 p3 0 −p1 p3
0 0 0 0 p2 p3 −p2 p3

0 0 0
−p1 p2 (p3 p3 − p1 p1) p2 p3

(p3 p3 − p2 p2) −p1 p2 p1 p3

⎤

⎥⎦ (5.138)

The non-reflective boundary corrector is considered. Then the differences of the
values along the characteristics that go beyond the boundaries of the integration
region must be zero. Thus, the matrix D from Eq. 5.105 takes the form represented

by Eq. 5.139 and vector
⇀

d from Eq. 5.105 can be written by Eq. 5.140.

D � �out (5.139)
⇀

d � 0 (5.140)

In Eq. 5.139,�out is the matrix composed of columns of the matrix� correspond-
ing to the outgoing characteristics. Equations 5.109, 5.110 take the following form
given by Eqs. 5.141, 5.142.

� � �∗,out
(
�out�∗,out

)−1
(5.141)

F � I − �∗,out
(
�out�∗,out

)−1
�out (5.142)
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Let here and further for the cases of interface correctors there is a medium a and
a medium b,

⇀

p is the external normal to the boundary of the medium a.
The interface corrector of continuity of velocity and traction is considered. These

interface conditions are written by Eqs. 5.143, 5.144.

⇀

v
a � ⇀

v
b � ⇀

V (5.143)

⇀

f
a

� −⇀

f
b

(5.144)

The matrix P is introduced by Eq. 5.145.

P �
⎡

⎢⎣
p1 0 0 0 p3 p2
0 p2 0 p3 0 p1
0 0 p3 p2 p1 0

⎤

⎥⎦ (5.145)

Thematrices�a ,Fa for themedium a are obtained in accordance with Eqs. 5.109,
5.110. For the medium b, the matrices �b, Fb are obtained in accordance with the
analogues of Eqs. 5.109, 5.110 for the positive outgoing characteristics. InEqs. 5.109,
5.110 and their analogs, the matrix D is used for the boundary corrector of the given
velocity in accordance with Eqs. 5.115–5.117. On the basis of these matrices, 4 new
matrices�a,σ , Fa,σ ,�b,σ , Fb,σ can be introduces. New 6×9 matrices Fa,σ , Fb,σ can
be found using Eqs. 5.146.

Fσ �

⎡

⎢⎢⎢⎢⎣

F41 F42 · · · F49

F51 F52 · · · F59

...
...

. . .
...

F91 F92 · · · F99

⎤

⎥⎥⎥⎥⎦
(5.146)

New 6 × 3 matrices �a,σ , �b,σ can be found using Eq. 5.147.

�σ �

⎡

⎢⎢⎢⎢⎣

�41 �42 �43

�51 �52 �53

...
...

...
�91 �92 �93

⎤

⎥⎥⎥⎥⎦
(5.147)

The 3 × 3 matrix given by Eq. 5.148 is considered as well.

P
(
�b,σ − �a,σ

)
(5.148)

The matrix
(
P
(
�b,σ − �a,σ

))−1
should be calculated using Eq. 5.149.
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(
P
(
�b,σ − �a,σ

)) (
P
(
�b,σ − �a,σ

))−1 � I (5.149)

The following Eqs. 5.150, 5.151 set new designations �a and �b.

�a � (
P
(
�b,σ − �a,σ

))−1
PFa,σ (5.150)

�b � − (
P
(
�b,σ − �a,σ

))−1
PFb,σ (5.151)

Using these new designations one can find
⇀

V by Eq. 5.152.

⇀

V � �a⇀

q
a,in (

t,
⇀

rB
)
+ �b⇀

q
b,in (

t,
⇀

rB
)

(5.152)

Then one can use the corrector of the given boundary velocity with
⇀

d � ⇀

V for
two different media a and b in accordance with Eqs. 5.153, 5.154.

⇀

q
a (

t + τ,
⇀

rB
)

� Fa⇀

q
a,in (

t,
⇀

rB
)
+ �a ⇀

V (5.153)

⇀

q
b (

t + τ,
⇀

rB
)

� Fb⇀

q
b,in (

t,
⇀

rB
)
+ �b ⇀

V (5.154)

Let us consider the free sliding interface corrector. The conditions are given by
Eqs. 5.155–5.157.

⇀

va · ⇀

p � ⇀

vb · ⇀

p � Vp (5.155)

f ap � − f bp (5.156)

f aτ � f bτ � 0 (5.157)

The matrix-row P given by Eq. 5.158 is used.

P �
[
(p1)

2 (p2)
2 (p3)

2 2p2 p3 2p1 p3 2p1 p2
]

(5.158)

The matrices �a , Fa for the medium a are obtained in accordance with the
Eqs. 5.109, 5.110. For the medium b, the matrices �b, Fb are obtained in accor-
dance with the analogues of Eqs. 5.109, 5.110 for the positive outgoing characteris-
tics. In Eqs. 5.109, 5.110 and their analogs, the matrix D is used for the boundary
corrector of mixed boundary conditions with the given normal projection of the
boundary velocity and with zero tangential component of the traction in accordance
with Eqs. 5.132–5.138. This boundary corrector is used with the normal

⇀

p for the
medium a and the normal −⇀

p for the medium b. The direction of the normal should
be taken into account into Eqs. 5.132–5.138.

On the basis of these matrices, 4 new matrices �a,σ , Fa,σ , �b,σ , Fb,σ can be
introduced. New 6 × 9 matrices Fa,σ , Fb,σ can be found using Eq. 5.146 but 6 × 1
matrices �a,σ , �b,σ should be calculated using Eq. 5.159.
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�σ �

⎡

⎢⎢⎢⎢⎣

�41

�51

...
�91

⎤

⎥⎥⎥⎥⎦
(5.159)

For a given interface corrector the expressionP
(
�b − �a

)
is scalar. The following

notation is introduced by Eqs. 5.160, 5.161.

�a � − (
P
(
�a + �b

))−1
PFa (5.160)

�b � (
P
(
�a + �b

))−1
PFb (5.161)

Then the projection of the velocity on the normal Vp is found from Eq. 5.162.

Vp � �a⇀

q
a,in (

t,
⇀

rB
)
+ �b⇀

q
b,in (

t,
⇀

rB
)

(5.162)

Next, the boundary corrector of mixed boundary conditions with the zero tangen-
tial projection of the traction is applied using Eqs. 5.163, 5.164.

⇀

d
a

�
⎡

⎢⎣
Vp

0
0

⎤

⎥⎦ (5.163)

⇀

d
b

�
⎡

⎢⎣
−Vp

0
0

⎤

⎥⎦ (5.164)

Then one can apply Eqs. 5.165, 5.166.

⇀

q
a (

t + τ,
⇀

rB
)

� Fa⇀

q
a,in (

t,
⇀

rB
)
+ �a⇀

d
a

(5.165)

⇀

q
b (

t + τ,
⇀

rB
)

� Fb⇀

q
b,in (

t,
⇀

rB
)
+ �b⇀

q
b
. (5.166)

5.4.3 Boundary and Interface Conditions for Isotropic
Elastic Waves

The boundary corrector with the given traction is considered. In this case, Eq. 5.105
takes the formof Eq. 5.112. In the case, when the normal

⇀

p is collinear to the direction
of splitting

⇀

n, Eq. 5.167 is true for the right boundary.
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⇀

p � ⇀

n (5.167)

Equation 5.168 is true for the left boundary.

⇀

p � −⇀

n (5.168)

The case, when the normal
⇀

p is collinear to the direction of splitting
⇀

n, is realized
during using the regular meshes. In the case of unstructured triangular or tetrahedral
grids, the normal might not being collinear to the split direction.

If the normal is collinear to the direction of splitting, then the boundary corrector
will act according to Eqs. 5.169, 5.170.

⇀

v
n+1 � ⇀

v
in − 1

ρcS

⇀

z +
1

ρ

(
1

cS
− 1

cP

)(
⇀

z · ⇀

n
)

⇀

n (5.169)

σn+1 � σin ±
(

⇀

z⊗⇀

n +
⇀

n⊗⇀

z
)

±
⇀

z · ⇀

n

λ + 2μ
(λI − 2 (λ + μ)N00) (5.170)

In Eqs. 5.169, 5.170 and further, the upper sign corresponds to the left boundary
of the integration region and the lower sign corresponds to the right boundary. The
following value is denoted by Eq. 5.171.

⇀

z � ∓
(
σin · ⇀

n
)

− ⇀

f (5.171)

If the normal is not collinear to the direction of splitting, then the boundary
corrector will act according to Eqs. 5.172, 5.173.

⇀

v
n+1 � ⇀

v
in ± 1

ρ

(
ω1

⇀

n −
(

⇀

n · ⇀

b

)
⇀

n +
⇀

b

)
(5.172)

σn+1 � σin −
(

(cP − c3) ω1 − 2cS

(
⇀

n · ⇀

b

))
N00 − c3ω1I − cS

(
⇀

n⊗⇀

b +
⇀

b⊗⇀

n

)

(5.173)

In Eqs. 5.172, 5.173, values
⇀

b and ω1 depend on
⇀

z given by Eq. 5.174 according
to Eqs. 5.175, 5.176.

⇀

z � σin · ⇀

p − ⇀

f (5.174)

ω1 �
2
(

⇀

n · ⇀

p
) (

⇀

n · ⇀

z
)

−
(

⇀

p · ⇀

z
)

(cP + c3)
(

⇀

n · ⇀

p
)2 − c3

∣∣∣⇀

p
∣∣∣
2 (5.175)

⇀

b � 1

cS
(

⇀

n · ⇀

p
)
(

⇀

z − ω1c3
⇀

p
)

(5.176)
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The boundary corrector with a given boundary velocity is considered. In this case,
Eq. 5.105 takes the form of Eq. 5.115. The boundary corrector acts in accordance
with Eqs. 5.177, 5.178.

⇀

v
n+1 � ⇀

v
in − ⇀

z � ⇀

V (5.177)

σn+1 � σin ± ρ
((

⇀

z · ⇀

n
)

((cP − 2cS − c3)N00 + c3I) + cS
(

⇀

n⊗⇀

z +
⇀

z⊗⇀

n
))

(5.178)

In Eqs. 5.177, 5.178,
⇀

z is given by Eq. 5.179.

⇀

z � ⇀

v
in − ⇀

V (5.179)

The boundary corrector of the first mixed conditions with given normal projection
of the boundary velocity and the tangential component of the traction is considered.

In this case, Eq. 5.105 takes the form of Eqs. 5.118–5.120. Note that
⇀

f τ is scalar in
a 2D case. In the case, when the normal is collinear to the direction of the splitting,
the traction can be calculated from Eq. 5.180.

⇀

f � ⇀

f τ +
⇀

n

(
∓ρcPVp +

(
∓
(
σin · ⇀

n
)

− ρcP
⇀

v
in
)

· ⇀

n

)
(5.180)

Then this traction is substituted intoEqs. 5.169–5.171 for calculation of the bound-
ary corrector with the given traction.

If the normal is collinear to the direction of the splitting, then the force density is
computed using Eq. 5.181.

⇀

f � ⇀

f τ + f p
⇀

p (5.181)

Further, this traction is substituted into Eqs. 5.172–5.176 for calculation of the
boundary corrector with the given traction. In Eq. 5.181, the following quantity f p
is denoted by Eq. 5.182.

f p � −
AM + BM

(
⇀

n · ⇀

f τ

)

(BM + CM)
(

⇀

n · ⇀

p
) (5.182)

In Eq. 5.182, the following notations given by Eqs. 5.183−5.185 are introduced.

CM � cP − cS (5.183)

BM � (2cS + c3 − cP)
(

⇀

n · ⇀

p
)2 − c3 (5.184)
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AM � ±ρcS

(
(cP + c3)

(
⇀

n · ⇀

p
)2 − c3

)
·
(
Vp −

(
⇀

v
in · ⇀

p

))

±BM
(
σin ÷ N00

)±CM

(
⇀

n · ⇀

p
) (

⇀

p ·
(
σin · ⇀

n
))

(5.185)

Also, the boundary corrector of the second mixed conditions with the given tan-
gential component of the velocity of the boundary and the normal projection of the
traction is considered. In this case, Eq. 5.105 takes the form of Eqs. 5.186–5.188.

⇀

V � ⇀

V τ (5.186)

σ · ⇀

p � ⇀

f (5.187)
⇀

f · ⇀

p � f p (5.188)

In Eq. 5.186,
⇀

V τ is the tangential component of the velocity of the boundary being
a given vector. In Eq. 5.188, f p is the projection of the traction on the normal being

a given scalar. Note that
⇀

V τ is scalar in a 2D case.
In the case, when the normal is collinear to the direction of the splitting, the

velocity
⇀

V is calculated using Eq. 5.189.

⇀

V � ⇀

V τ +
⇀

n

(
⇀

v
in · ⇀

n ± 1

ρcP

(
⇀

n · σin · ⇀

n − f p
))

(5.189)

Then this velocity
⇀

V is substituted into Eqs. 5.177–5.179 for calculation of the
boundary condition with the given boundary velocity.

If the normal is not collinear to the direction of the splitting, then the velocity is
calculated by Eq. 5.190.

⇀

v � ⇀

V τ + Vp
⇀

p (5.190)

In Eq. 5.190, the quantity that can be found from Eq. 5.191 is introduced.

Vp � DM

EM
(5.191)

In Eq. 5.191, the notations DM , EM are introduced by Eqs. 5.192, 5.193.

DM �
(

(cP − 2cS − c3)
(

⇀

n · ⇀

p
)2

+ c3

)
·
((

⇀

v
in − ⇀

V τ

)
· ⇀

n

)

+ 2cS
(

⇀

n · ⇀

p
)(

⇀

v
in · ⇀

p

)
∓ 1

ρ

(
f p − ⇀

p · σin · ⇀

p
)

(5.192)

EM �
(

(cP − 2cS − c3)
(

⇀

n · ⇀

p
)2

+ 2cS + c3

)(
⇀

n · ⇀

p
)

(5.193)
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For the nonreflecting boundary corrector, Eqs. 5.109, 5.110 take the form of
Eqs. 5.141, 5.142, respectively.

The interface corrector of continuity of velocity and traction is considered. The
conditions on the interface are given by Eqs. 5.143, 5.144. In the case, when the

normal
⇀

p is collinear to the direction of the splitting
⇀

n, the velocity
⇀

V is calculated
using Eq. 5.194.

⇀

V � 1

ρacaS + ρbcbS

{
ρa

((
⇀

p · ⇀

v
a,in

) (
caP − caS

)
⇀

p + caS
⇀

v
a,in

)

+ ρb

((
⇀

p · ⇀

v
b,in

) (
cbP − cbS

)
⇀

p + cbS
⇀

v
b,in

)
− (

σa,in − σb,in
) · ⇀

p

− ρa
(
caP − caS

)
+ ρb

(
cbP − cbS

)

ρacaP + ρbcbP

·
(

⇀

p ·
((

ρacaP
⇀

v
a,in

+ ρbcbP
⇀

v
b,in

)
− (

σa,in − σb,in
) · ⇀

p

))}
⇀

p (5.194)

Further, this velocity
⇀

V is substituted into Eqs. 5.177–5.179 for calculation of the
boundary condition with the given boundary velocity.

If the normal
⇀

p is not collinear to the direction of the splitting
⇀

n, then the velocity
⇀

V should be found using Eq. 5.195.

⇀

V �

(
2
(

⇀

n · ⇀

p
)2 (

ρbcbS + ρacaS + ρbcb3 + ρaca3
)− BC

)(
⇀

AC · ⇀

n

)
⇀

n

BC
(
ρbcbS + ρacaS

) (
⇀

n · ⇀

p
)

−
(
ρbcbS + ρacaS + ρbcb3 + ρaca3

) (⇀

AC · ⇀

p

)
⇀

n

BC
(
ρbcbS + ρacaS

) +

⇀

AC
(
ρbcbS + ρacaS

) (
⇀

n · ⇀

p
)

+

(
ρbcb3 + ρaca3

) (⇀

AC · ⇀

p

)
↼

p

BC
(
ρbcbS + ρacaS

) (
⇀

n · ⇀

p
) −

2
(
ρbcb3 + ρaca3

) (⇀

AC · ⇀

n

)
↼

p

BC
(
ρbcbS + ρacaS

) (5.195)

In Eq. 5.195, the following notations given by Eqs. 5.196, 5.197 are introduced.
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⇀

AC � (
σb,in − σa,in

) · ⇀

p +

((
ρbcbS

⇀

v
b,in

+ ρacaS
⇀

v
a,in

)
· ⇀

p

)
⇀

n

+
(

⇀

n · ⇀

p
)(

ρbcbS
⇀

v
b,in

+ ρacaS
⇀

v
a,in

)

+ ρb

(
⇀

v
b,in · ⇀

n

)((
cbP − 2cbS − cb3

) (
⇀

n · ⇀

p
)

⇀

n + cb3
⇀

p
)

+ ρa

(
⇀

v
a,in · ⇀

n

)((
caP − 2caS − ca3

) (
⇀

n · ⇀

p
)

⇀

n + ca3
⇀

p
)

(5.196)

BC � (
ρbcbP + ρacaP + ρbcb3 + ρaca3

) (
⇀

n · ⇀

p
)2 − (

ρbcb3 + ρaca3
)

(5.197)

The free sliding interface corrector is considered. The conditions on the interface
are given by Eqs. 5.155–5.157. In the case, when the normal

⇀

p is collinear to the
direction of the splitting

⇀

n, one calculates Vp using Eq. 5.198.

Vp �

(
ρacaP

⇀

v
a,in

+ ρbcbP
⇀

v
b,in − (

σa,in − σb,in
) · ⇀

p

)
· ⇀

p

ρacaP + ρbcbP
(5.198)

Further, Vp and
⇀

f τ � 0 are substituted into the first mixed conditions given by

Eq. 5.180 for medium a with an external normal
⇀

p. Values −Vp and
⇀

f τ � 0 are
substituted into the first mixed conditions given by Eq. 5.180 for medium b with an
external normal −⇀

p.
If the normal

⇀

p is not collinear to the direction of the splitting
⇀

n, then Vp is
calculated by Eq. 5.199.

Vp � BF

AF
(5.199)

In Eq. 5.199, the following notations are introduced by Eqs. 5.200, 5.201.

AF � (
Ba
M + Ca

M

)
ρbcbS

((
cbP + cb3

) (
⇀

n · ⇀

p
)2 − cb3

)

+
(
Bb
M + Cb

M

)
ρacaS

((
caP + ca3

) (
⇀

n · ⇀

p
)2 − ca3

)
(5.200)
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BF � − (
Ba
M + Ca

M

)
ρbcbS

((
cbP + cb3

) (
⇀

n · ⇀

p
)2 − cb3

)(
⇀

v
b,in · ⇀

p

)

− (
Bb
M + Cb

M

)
ρacaS

((
caP + ca3

) (
⇀

n · ⇀

p
)2 − ca3

)(
⇀

v
a,in · ⇀

p

)

+
(
Bb
M + Cb

M

)
Ba
M

(
σa,in ÷ N00

)− (
Ba
M + Ca

M

)
Bb
M

(
σb,in ÷ N00

)

+
(
Bb
M + Cb

M

)
Ca

M

(
⇀

n · ⇀

p
) (

⇀

p ·
(
σa,in · ⇀

n
))

− (
Ba
M + Ca

M

)
Cb

M

(
⇀

n · ⇀

p
) (

⇀

p ·
(
σb,in · ⇀

n
))

(5.201)

Further, values Vp and
⇀

f τ � 0 are substituted into the first mixed conditions given

by Eqs. 5.181–5.185 for medium a with an external normal
⇀

p and values −Vp and
⇀

f τ � 0 are substituted into the first mixed conditions given by Eqs. 5.181–5.185 for

medium b with an external normal −⇀

p. In Eq. 5.201, parameters Ba
M , C

a
M , and Bb

M ,
Cb

M were introduced into Eqs. 5.183, 5.184 for media a and b, respectively.

5.4.4 Boundary and Interface Conditions for Acoustic Waves

The boundary condition with a given pressure is considered. The Eq. 5.105 takes the
form of Eq. 5.202.

pn+1 � p (5.202)

The boundary corrector will act according to Eqs. 5.203, 5.204.

⇀

v
n+1 � ⇀

v
in
+

pin − p

cρ
⇀

p (5.203)

pn+1 � p (5.204)

The boundary condition with a given normal projection of the velocity is consid-
ered. Equation 5.105 takes the form of Eq. 5.205.

⇀

v
n+1 · ⇀

p � Vp (5.205)

The boundary corrector will act according to Eqs. 5.206, 5.207.

⇀

v
n+1 � ⇀

v
in −

(
⇀

v
in · ⇀

p − Vp

)
⇀

p (5.206)

pn+1 � pin + c1ρ

(
⇀

v
in · ⇀

p − Vp

)
(5.207)
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Free sliding interface corrector is considered and given by Eqs. 5.208, 5.209.

⇀

va · ⇀

p � ⇀

vb · ⇀

p � Vp (5.208)

pa � pb (5.209)

Firstly, one can find p using Eq. 5.210.

p �
caρa pin,b + cbρb pin,a − caρacbρb

((
⇀

v
in,b · ⇀

p

)
−
(

⇀

v
in,a · ⇀

p

))

caρa + cbρb
(5.210)

Substituting p into Eqs. 5.203, 5.204 for both media, one can obtain the action of
this interface corrector.

5.5 Conclusions

The family of grid-characteristicmethods for solvinghyperbolic systemsof equations
is considered in this chapter. This family of numerical methods adapts successfully
to the basic systems of equations used to solve applied problems of seismic oil and
gas exploration, seismic resistance of various structures, ultrasonic non-destructive
testing of railway tracks, ultrasonic studies of various materials, human body, and
ultrasonic operations. In this chapter, cases of isotropic and anisotropic elastic waves
and acoustic waves are considered in detail. The structure of the wave processes for
an anisotropic elastic medium is also obtained and considered.
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Chapter 6
Numerical Modelling of Composite
Delamination and Non-destructive
Testing

Katerina A. Beklemysheva, Alexey V. Vasyukov, Alexander O. Kazakov
and Alexey S. Ermakov

Abstract Delamination caused by low-velocity strike is considered as one of the
most dangerous failure types. The destruction of contact between the plies or compos-
ite components significantly lowers the residual strength of the material but cannot
be determined by visual inspection. These failures can mostly be determined by
ultrasound testing, however, it requires a long time and cannot be carried out on
site, which increases the maintenance cost. Both delamination emergence and ultra-
sound diagnostic results are determined by wave processes in viscoelastic media.
The grid-characteristic method used in this chapter shows good results verified on
various experimental data. The results of numerical modelling of delamination and
its diagnostics are given in this chapter.

Keywords Numerical modelling · Grid-characteristic method · Delamination
Non-destructive testing · Elastic waves · Ultrasound testing

6.1 Introduction

Massive use of composites in the bearing structures causes a number of problems.
One of themost crucial problems is a development of fast and reliablemethod for non-
destructive testing [1, 2]. Low-velocity strikes with the strike energy approximately
less than 200 J occur very often during the maintenance, repair, takeoff, and landing
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of an aircraft. A high-velocity strike causes visible deformations of material but
a low-velocity strike leads to an internal damage, which is barely visible. After
being exposed to a low-velocity strike, the composites behave differently than the
homogenous materials. Even if a composite shows a high strength in standard tests
comparable to the traditional aviation materials, it can be damaged in situations that
are not modeled in standard tests. The destruction during a low-velocity strike can
take place in the volume of material, between composite plies, or between composite
components [3, 4]. It lowers the residual strength of the material without almost any
visible damage that impedes its diagnostics.

The non-destructive testing assumes the detection of damaged areas without any
irreversible actions towards the material. The visual examination is usually enough
for homogenous materials because the considerable decline of material strength
occurs only after visible deformations.

One of the composite peculiarities is a fast lowering of material strength with a
failure of the internal composite structure (delamination between plies or composite
components, matrix cracking). The exposure of a material with such failures to a
dynamic or static operational load leads to its final destruction, even if the load
strength was not enough to break an intact composite or a homogenous material
of the same strengh. While significantly lowering the composite material strength,
these internal failures are mostly invisible to the naked eye. This means that the
strength norms and standards for the traditional aviation materials are ineffective for
composites.

One of the most popular testing methods is the ultrasound testing. In homoge-
nous material, the emitted elastic waves are propagated linearly in the material, then
reflected from a crack or a backside, and returned to the sensor. The structure of the
composite complicates the picture, because the signal of the sensor has a high level
of noise caused by elastic waves that are reflected and refracted on internal con-
tacts between materials [5, 6]. Different composite destruction types can absorb the
ultrasound pulse (multiple matrix cracking) or let it through without any interaction
(closed delaminations between plies).

Themodelling of the ultrasound requires a numerical method that allows to obtain
a full elastic wave pattern, considering the borders and contacts behavior with a high
temporal and spatial resolution. We use the grid-characteristic numerical method
[7–9] based on the characteristic parameters of the original system of equations that
allows to model the elastic waves’ propagation in the deformable solids and interac-
tions ofwavefronts withmaterial borders and obtain the full solution of nonstationary
contact problems. The method allows to obtain the components of the stress tensor
and strain rate vector with the high temporal and spatial resolution in the modelling
area.

Usually the aviation composite consists of several (from 2 to 6) subpackets, each
of which consists of 11 orthotropic plies [10]. The subpacket behaves closely to
an isotropic material because plies are aligned at different angles. In this chapter,
we model the composite as several layers of an isotropic material because the plies
number is enough to neglect the subpacket anisotropy during modelling. To obtain
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the accuracy for a quantitative comparison with an experiment, the additional mea-
surements of the subpacket anisotropic behavior parameters are necessary.

In this chapter, both the formation of internal damage in the composite panel
during impact and detection of model defects using ultrasonic testing are considered.
The problem statement of delamination caused by multiple low-velocity strike is
discussed in Sect. 6.2. Section 6.3 presents the numerical results of delamination
caused by multiple low-velocity strike. The problem statement and numerical results
of the direct problem of non-destructive testing are given in Sects. 6.4 and 6.5,
respectively. Section 6.6 concluded the chapter.

6.2 Delamination Caused by Multiple Low-Velocity Strike:
Problem Statement

Numerical modelling results for a single low-velocity strike are presented in
[10, 11]. During a multiple strike, the elastic waves’ pattern is more complex
because the wave interference can alter the destruction pattern or lead to the
appearance of new destruction areas. Prediction of these effects without modelling
the full process only by single strike data is an extremely difficult task. Mod-
elling of the full elastic waves’ pattern in a composite during the multiple low-
velocity strike can explain many effects and predict their appearance in experi-
ments.

In this chapter, different number of the strikers is considered (one, two, and four).
Each striker is modeled as a sphere. The case of a collision at an angle is also
considered. Different modes of colliding, such as the simultaneous strike, strike with
a short delay, and strike with a long delay, are examined. The length of a short delay
was estimated from a characteristic time for the wave processes in a plate. That time
is necessary for a longitudinal wave from the striker to reach the backside of the
plate. In this case, the waves from multiple strikers still have time to interact. The
length of a long delay was estimated from viscous decay processes: the second strike
occurs, when the waves from the first one have already dissipated. As a result, the
second strike is applied to a previously destructed material without any interaction
with wave processes between different strikes.

Thereinafter, the delamination model is considered in Sect. 6.2.1. The calculation
parameters are pointed in Sect. 6.2.2.

6.2.1 Delamination Model

One of the characteristic failure modes of the composite is a delamination that means
the destruction of contact between the composite plies. This process can be mod-
eled by modifying a contact condition without grid reorganization. The existing
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delamination models for Finite Element Modelling (FEM) [12–17] face the certain
complexities, which require introducing the inner model parameters and lead to the
non-physical oscillations. Grid-characteristic method allows for a much simpler con-
tact and border problem statement. In this chapter, we suggest the following model.

Each contacting node can be either intact or failed. During the calculation, we
consider only the state of the real node ignoring the virtual ones [8]. For a failed node,
the friction contact algorithm is always used [18]. For an intact node, we follow these
several steps:

Step 1. The preliminary step. We assume that a node is in the state of complete
adhesion and calculate the components of the stress tensor and strain rate vector
(−→v ∗

, σ ∗) obtaining the force acting on the contacting node ( �f ∗ � σ ∗ · �n).
Step 2. The destruction criterion is

∣
∣
∣ �f ∗

∣
∣
∣ ≥ f0, where f 0 is an adhesion strength.

If the criterion is not met, then the preliminary step is considered to be correct and
we proceed to the next node. Otherwise, we move to Step 3.

Step 3. The recalculation. If the destruction criterion is met, the node is marked
as failed. The preliminary step is considered to be incorrect and we calculate the
components of the stress tensor and strain rate vector according to the friction contact
algorithm.

6.2.2 Calculation Parameters

Several problem statements are mentioned below:

• One striker:

a. Perpendicular strike.
b. Strike at an angle.

• Two strikers:

a. Simultaneous strike.
b. Strike with a short delay.
c. Strike with a long delay.

• Four strikers:

a. Simultaneous strike.
b. Strike with a short delay.
c. Strike with a long delay.

The composite is modeled as follows. Three layers are considered to be the elastic
deformable bodies made of Carbon Fiber Reinforced Polymer (CFRP). The striker
material is steel (Table 6.1). It is assumed that the contacts between layers are destruc-
tible with the strength of 42 MPa. Contacts between strikers and plate are friction
contacts, k = 0.1. Three values of strike energy 50, 100, and 150 J are considered.
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(a) (b) (c)

Fig. 6.1 General view: a one striker, b two strikers, c four strikers

The energy is distributed evenly between the strikers. Radius of the single striker is
rsingle = 1.5 mm, each of the two strikers is rdouble = 1.19 mm, each of the four strikers
is rquad = 0.94 mm.

The general view of the calculation area is presented in Fig. 6.1. Time step was
determined from Courant condition, τ = 1.91 × 10−8 s. Length of the short delay
is tm = 1.91 × 10−6 s (100 time steps) and of the long delay is tb = 5.73 × 10−6 s
(300 time steps). For the strike at an angle, three angle values 10°, 30°, and 60° were
considered.

6.3 Delamination Caused by Multiple Low-Velocity Strike:
Numerical Results

Figures 6.2 and 6.3 present the calculation results for the single striker.
Figure 6.2 presents the strain rate vector modulus and delamination areas at dif-

ferent times in XZ section passing through the collision point. Strike energy is 50 J.
Figure 6.3 presents the delamination areas for different values of strike energy.

The characteristic annular delamination form that can be seen in every image is
caused by shear stresses on the contact. The front of the longitudinal wave emitted
from the collision point is spherical. The compression wave directly beneath the
collision point passes through the contact without damaging it. Moving away from
the collision point, a force on the contact obtains tangential component increasing
until the shear stress becomes high enough to destroy the contact. At the same time,
the wave dissipates with the distance and distributes to a larger area lowering its
amplitude until it is not enough to destroy the contact. The amplitude of tension
waves from the backside and striker bouncing is not enough to destroy the contact.

Table 6.1 Elastic parameters of the plate and strikers

Material E, GPa ν ρ, kg/m3 λ, GPa μ, GPa cp, m/s cs, m/s

CFRP (subpacket) 8.5 0.32 1580 5.72 3.22 2775 1425

Steel 200 0.28 7800 99.43 78.13 5725 3165
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(a) (b) 

Fig. 6.2 Numerical results for the single striker, strike energy 50 J, section XZ passing through
the collision point, and time steps 100, 200, and 300: a strain rate vector modulus, b delamination
areas between upper and middle layers

Edge effects observed in experiments [2] can be seen on the upper layer near sides
of the sample (Fig. 6.3).

Numerical results for two strikers with the delamination areas for different col-
lision modes are presented in Fig. 6.4. In the case of a simultaneous collision with
two strikers, the compression waves interfere. Shear stresses on the contact in the
area between strikers compensate each other and the contact remains intact.

Othermodes demonstrate an asymmetry caused by the time delay between strikes.
Compression wave from the second striker does not reach the contact and the wave
from the first striker destroys a larger area than after the simultaneous strike.

In the case of a long delay, the compression wave from the second striker reaches
the contact after the formation of the destruction area from the first collision. Waves
do not interfere and the second striker interacts with an already destroyed plate. The
destroyed area is significantly higher than both in the case of simultaneous strike and
in the case of a single strike of the same total energy.
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(a) (b) (c) 

Fig. 6.3 Delamination areas for the single striker with strike energy (at the top—delamination
between upper and middle layers, at the bottom—between middle and lower layers): a 50 J, b
100 J, c 150 J

Numerical results for four strikers with the delamination areas for different colli-
sion modes are presented in Fig. 6.5. These areas are significantly lower than in the
case of two strikers. It is caused by the larger distance between strikers and wave
interference between different strikes.

Delamination areas for a single striker and different strike angles are presented in
Fig. 6.6. Increasing the strike angle leads to the reduction and shift of delamination
area. At the angle of 30°, a considerable asymmetry can be observed. At the angle
of 60°, the pattern changes completely. The amplitude of the compression wave is
too low to cause delamination and the damage is mostly caused by the shear wave.

The foregoing results show that the delamination pattern after a multiple low-
velocity strike is defined by the interference of elastic waves from the collision
points. Both form and size of the delamination area is defined not only by the mass
and velocity of strikers but also from the time delay between strikes. The collision
of a composite plate with a part of complex shape can lead to similar effects.
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(a) (b) (c) 

Fig. 6.4 Delamination areas for two strikers, strike energy 100 J (at the top—delamination between
upper and middle layers, at the bottom—between middle and lower layers): a simultaneous strike,
b small delay, c long delay

(a) (b) (c) 

Fig. 6.5 Delamination areas between upper and middle layers for four strikers, strike energy 50 J:
a simultaneous strike, b short delay, c long delay
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(a) (b) (c) 

Fig. 6.6 Delamination areas between upper and middle layers for the angled strike, strike energy
50 J: a angle 10°, b angle 30°, c angle 60°

6.4 Direct Problem of Non-destructive Testing: Problem
Statement

For a model problem, we took a two-layered composite with the layer width 3 mm
and material parameters presented in Table 6.1. Three cases are considered: an intact
composite plate, a plate with the radius delamination 2 mm, and a plate with the
radius delamination 4 mm. General view of the lower layer is presented in Fig. 6.7,
the cross-section of the calculation area is depicted in Fig. 6.8. Note that the axis Z
is aligned perpendicular to the plate surface.

 

(a) (b) (c) 

Fig. 6.7 Delamination areas, lower layer: a no delamination, b delamination radius 2mm, c delam-
ination radius 4 mm

(a) (b) (c) 

Fig. 6.8 Delamination areas, XZ cross-section: a no delamination, b delamination radius 2 mm, c
delamination radius 4 mm
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(a) (b) (c) 

Fig. 6.9 Initial state on the upper surface: a perpendicular strike (along the axis Z), b tangential
strike along the axis X, c tangential strike along the axis Y

Fig. 6.10 Line of sensors

The diagnostic pulse is generated by the applying of an initial state of velocity
in a small area of the upper surface of the plate. In real devices, the diagnostic
pulse has a complex shape but the given statement is enough to obtain all types of
waves generated by the surface strike and analyze their behavior with respect to
the delamination area. Three strike directions are considered: a perpendicular strike
(along the axis Z) and two tangential strikes (along the axes X and Y). Initial states
on the upper surface are presented in Fig. 6.9. The line of sensors (aligned with the
axis Y) on the upper surface and general view of the calculation area are presented
in Fig. 6.10.

6.5 Direct Problem of Non-destructive Testing: Numerical
Results

Consider the numerical results of the perpendicular strike, tangential strike along
the axis X, and tangential strike along the axis Y in Sects. 6.5.1–6.5.3, respectively.
Sensor line data is given in Sect. 6.5.4. The analysis of numerical results is presented
in Sect. 6.5.5.
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6.5.1 Perpendicular Strike

Distribution of velocity vector components on the upper surface for 300 time step is
presented in Figs. 6.11, 6.12 and 6.13. The distribution of Z velocity vector compo-
nent in the XZ cross-section for the consecutive time steps and all three considered
types of delaminated area are presented in Fig. 6.14.

6.5.2 Tangential Strike Along the Axis X

The distribution of velocity vector components on the upper surface for 300 time
step is presented on Figs. 6.15, 6.16 and 6.17. The distribution of X velocity vector
component in the XZ cross-section for the consecutive time steps is presented on
Fig. 6.18. The distribution of X velocity vector component on the upper surface for
the consecutive time steps is presented on Fig. 6.19.

6.5.3 Tangential Strike Along the Axis Y

The distribution of velocity vector components on the upper surface for 300 time
step is presented on Figs. 6.20, 6.21 and 6.22. The distribution of Y velocity vector
component in the XZ cross-section for the consecutive time steps is depicted in
Fig. 6.23. The distribution of Y velocity vector component on the upper surface for
the consecutive time steps is presented in Fig. 6.24.

6.5.4 Sensor Line Data

Plots of velocity vector components along the sensor line for the consecutive time
steps are presented in Fig. 6.25.

(a) (b) (c) 

Fig. 6.11 Distribution of X velocity vector component on the upper surface for 300 time step:
a intact material, b delamination area 2 mm, c delamination area 4 mm
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(a) (b) (c) 

Fig. 6.12 Distribution of Y velocity vector component on the upper surface for 300 time step: a
intact material, b delamination area 2 mm, c delamination area 4 mm

(a) (b) (c) 

Fig. 6.13 Distribution of Z velocity vector component on the upper surface for 300 time step: a
intact material, b delamination area 2 mm, c delamination area 4 mm

6.5.5 Analysis of Numerical Results

Figures 6.11, 6.12 and 6.13 show that the Z velocity vector component is the most
suitable for the further analysis of data for the perpendicular strike. Its amplitude is
higher and the difference between the intact and delaminated cases ismore prominent
than for other components. Similarly, Figs. 6.15, 6.16, 6.17, 6.20, 6.21 and 6.22
show that for a tangential strike it is most suitable to take the same velocity vector
component as the strike direction.

Figure 6.14 shows the elastic waves propagating from the point of initial state
application. The Rayleigh wave has the highest amplitude and is comparatively slow.
It propagates along the plate upper surface. Two longitudinal waves (the compression
and tension) propagate with the highest speed in a volume of the material and reflect
from the plate backside. In the case of delamination, the compression wave passes
through the contact and the tension wave reflects from it. Unlike the open fracture,
which reflects all longitudinal waves, the delamination as a closed fracture reflects
only a half longitudinal waves.

Figure 6.18 shows the wave patterns in the XZ cross-section for the tangential
strike along the axisX formed by twowave groups. The longitudinalwaves propagate
to and from the sensor line. The slower shear wave propagates in the volume of the
material and reflects from the backside. Both types of wave give the reflection from
the delamination. Firstly, the longitudinal waves’ reflection comes to the sensor.
Figure 6.19 shows the reflection on the upper surface of the plate.

Figure 6.23 shows the wave patterns in the XZ cross-section for the tangential
strike along the axis Y. Since the material is isotropic, the three-dimensional wave
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(a) (b) (c) 

Fig. 6.14 Distribution of Z velocity vector component in the XZ cross-section, from top to bot-
tom—time steps 50, 60, 70, 80, 90, 100, and 110: a intact material, b delamination area 2 mm, c
delamination area 4 mm
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(a) (b) (c) 

Fig. 6.15 Distribution of X velocity vector components on the upper surface for 300 time step: a
intact material, b delamination area 2 mm, c delamination area 4 mm

(a) (b) (c) 

Fig. 6.16 Distribution of Y velocity vector components on the upper surface for 300 time step: a
intact material, b delamination area 2 mm, c delamination area 4 mm

(a) (b) (c) 

Fig. 6.17 Distribution of Z velocity vector components on the upper surface for 300 time step: a
intact material, b delamination area 2 mm, c delamination area 4 mm

pattern in this case coincides with the pattern from the previous case. For better
understanding, we look at the cross-section that is perpendicular to the sensor line.
Unlike both of the previous cases, we can see only one group of waves in this cross-
section.

Consider in detail the three-dimensional wave structure for this case. The shear
wave propagates along the axis Z (to the backside) and along the axis X (to the line
of sensors). The same wavefront fades into the longitudinal wave in the direction of
the axis Y making the wavefront form elliptical. In other directions, the wavefront
breaks into the longitudinal and shear groups propagating with different speeds. The
amplitude ratio depends on the angle. The closer to the axis X, the higher is the
amplitude of shear waves. A surface wave propagating along the axis Y can also be
seen in Fig. 6.18, though with a lower amplitude than for the perpendicular strike
(Fig. 6.14).
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(a) (b) (c) 

Fig. 6.18 Distribution of X velocity vector components in the XZ cross-section, from top to bot-
tom—time steps 50, 100, 150, 200, 250, and 300: a intact material, b delamination area 2 mm, c
delamination area 4 mm

All mentioned waves can be seen in Fig. 6.25. The first column of plots corre-
sponds to the perpendicular strike. At time steps 50, 60, 70, and 80, we can see the
direct wave from the diagnostic pulse. At the 90 time step, we can see the fracture
response—a positive amplitude pulse that corresponds to the reflected tension wave.
Afterward, we can see the passing of the Rayleigh wave. The second column of plots
corresponds to the tangential strike along the axis X. At time steps 50, 60, 70, 80,
90, and 100, we can see the longitudinal wave. Further, at time steps 100–220 we
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(a) (b) (c) 

Fig. 6.19 Distribution of X velocity vector components on the upper surface, from top to bot-
tom—time steps 50, 100, 150, 200, 250, and 300: a intact material, b delamination area 2 mm, c
delamination area 4 mm

(a) (b) (c) 

Fig. 6.20 Distribution of X velocity vector components on the upper surface for 300 time step: a
intact material, b delamination area 2 mm, c delamination area 4 mm
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(a) (b) (c)

Fig. 6.21 Distribution of Y velocity vector components on the upper surface for 300 time step: a
intact material, b delamination area 2 mm, c delamination area 4 mm

(a) (b) (c) 

Fig. 6.22 Distribution of Z velocity vector components on the upper surface for 300 time step: a
intact material, b delamination area 2 mm, c delamination area 4 mm

can see the passing of the surface wave. The reflection from the delamination can be
seen at time steps 220–290. The third column of plots corresponds to the tangential
strike along the axis Y. A considerable signal appears only from 120 time step—the
passing of the surface wave. The reflection from the delamination can be seen at time
steps 210–250.

All three cases demonstrate the significant influence of surface waves on the
sensors signal. In some cases, this influence can be removed by placing the sensor
on the opposite side but this method has a number of drawbacks. In addition to the
technological complexity of adjusting the position and synchronization of the emitter
and sensors, the difficulties arise in analyzing the obtained signals. A peculiarity of
elastic waves noticed in seismological modelling [19–22] is that they restore the
wavefront after passing the damaged area. In our task, this effect can be noticed in
Figs. 6.14, 6.18 and 6.23. Consequently, the fracture diagnosis requires a thorough
quantitative analysis, which can be performed in numerical experiments but meets
a lot of complications in the case of a real material. The lack of data on the inner
structure of the composite, especially on the random mistakes in a particular cover
part, makes this analysis very inaccurate and unreliable.

The case of the perpendicular strike corresponds to real ultrasound devices. The
difference between the intact and delaminated materials is much lower than the
surface wave amplitude. Also, the reflected pulse has a relatively short duration. The
tangential strikes and shear waves give higher reflected signal amplitude and longer
duration, which reduces requirements for the ultrasound sensor. Also, the reflection
is necessarily arrived the sensor after the surface wave, thus they cannot overlap.
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(a) (b) (c) 

Fig. 6.23 Distribution of Y velocity vector components in the XZ cross-section, from top to bot-
tom—time steps 50, 100, 150, 200, 250, and 300: a intact material, b delamination area 2 mm, c
delamination area 4 mm
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(a) (b) (c) 

Fig. 6.24 Distribution of Y velocity vector components on the upper surface, from top to bot-
tom—time steps 50, 100, 150, 200, 250, and 300: a intact material, b delamination area 2 mm, c
delamination area 4 mm
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(a) (b) (c) 

Fig. 6.25 Distribution of the velocity vector components on the sensor line for 50–300 time steps
(blue line—the intact material, red line—the delamination 2 mm, orange line—the delamination
4 mm): a perpendicular strike (Z velocity vector component), b tangential strike along the axis X
(X velocity vector component), c tangential strike along the axis Y (Y velocity vector component)
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(a) (b) (c) 

Fig. 6.25 (continued)
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(a) (b) (c) 

Fig. 6.25 (continued)
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(a) (b) (c) 

Fig. 6.25 (continued)

6.6 Conclusions

Results of the numerical modelling of delamination due to multiple low-velocity
strike show that the delamination pattern depends on the number of strikers. This
also means that strikers of the same mass and velocity but with a different shape (for
example, different repair tools) can cause delamination of different size.
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Results of the numerical modelling of ultrasound diagnostics show that the appli-
cation of shear waves is advisable for the ultrasound non-destructive testing, espe-
cially for the detection of delamination areas.
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Chapter 7
Wave Processes Modelling in Geophysics

Alena V. Favorskaya, Nikolay I. Khokhlov, Vasiliy I. Golubev,
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Abstract In this chapter, the application of the grid-characteristic method to
solving seismic prospecting problems is considered. The characteristic seismoge-
ological models, including Marmousi and SEG/EAGE Salt Model, are considered,
wave patterns and seismograms are presented. The cases of 2D and 3D modelling,
curvilinear boundaries betweengeological layers, fractured layers taking into account
the topology of the Earth’s surface, construction of seismograms for both 2D and
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3D seismic survey cases, and vertical seismic profiling are considered. The investi-
gation of the performance of a software complex developed on the basis of a grid-
characteristic method for modelling hydrocarbon deposits of various computational
complexity was performed. Also, faults zones of a different nature, both about the
length of the faults and the type of geological environment inside these faults, was
studied. A detailed analysis of spatial dynamic wave patterns is carried out, and pre-
dictive conclusions are made about the nature of the seismograms obtained, which
were actually confirmed in the respective seismograms. It will be shown in this
Chapter that typical analytical tests cannot guarantee that software gives an oppor-
tunity for the geologist to develop right conclusions. This problem can be solved
only by understanding the physical basis of the phenomena under consideration and
the peculiarities of the operation of the difference methods used in the software,
simultaneously. This suggests the method called Wave Logica, fragments of which
are also given in the Chapter.

Keywords Grid-characteristic method · Numerical method
Linear-elastic media · Elastic waves · Geological media · Seismic waves
Waves modelling · Seismic prospecting · Seismic exploration · Oil · Gas · Faults

7.1 Introduction

Numerical solution of seismic exploration problems has a large-scale application for
the exploration of the Earth’s and interior of other planets of Solar system [1–3].
These problems are the tasks of increased computational complexity in complete
three-dimensional definitions, taking into account the contact boundaries of complex
shapes, such as the seabed, the surface of thewell, the surface of theEarth, and various
inclusions such as fractured zones and faults. It is important that the numerical
method takes into account all types of waves, such as Rayleigh and Love waves
[4], Krauklis waves [5–7], SP-waves, PS-waves, etc. Because these types of waves
are observed in the field, and if the numerical method does not allow them to be
modeled, it is obvious that the results of modelling can differ significantly from
physical experiments, which will substantially limit the use of computer simulation
for the study of seismic phenomena and their patterns in a case of various geophysical
and hydrocarbon objects.

For the calculation of synthetic seismograms, the family of ray-tracing methods
is widely used [8–10]. An opportunity of applying finite-difference approach for
seismograms modelling is discussed in [11]. Some other methods are used as well
[12–15]. A shot review of different methods for full-wave numerical simulation one
can read in Chap. 5. Also one can find a comparison of different methods in [16,
17]. Geological faults modelling is discussed in [18, 19]. The applications of finite-
difference grid-characteristicmethod, whichwas described in Chap. 5 for the seismic
waves modelling, are considered in [20–24].

https://doi.org/10.1007/978-3-319-76201-2_5
https://doi.org/10.1007/978-3-319-76201-2_5
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The study of geophysical faults of different topology is discussed in Sect. 7.2.
The results of seismic waves and seismograms simulation using different 2D and
3D seismogeological model, including Marmousi and SEG/EAGE Salt Model, are
situated in Sect. 7.3. Section 7.4 gives the conclusions of the Chapter.

7.2 Study of Geophysical Faults

In this Section, the emphasis is on demonstrating the possibilities of analyzing
dynamic spatial seismic wave patterns called Wave Logica [20–26]. Such analy-
sis permits to localize useful information in seismograms. The recommendations
obtained on the basis of the analysis of dynamic wave patterns are verified on an
array of synthetic seismograms. The synthetic seismograms help to model the mul-
tilayered geological media and clusters of geological faults of various topologies.

In order to solve these problems, the faults in the geological environment of
various lengths are considered. Wave processes occurring during the seismic explo-
ration of this type of faults were modeled by solving a system of equations, which
describes an elastic wave field using a grid-characteristicmethod by full wave numer-
ical modelling with the explicit allocation of other geological material within these
geological faults. One can find a detailed description of this system of equation and
grid-characteristic numerical method into Chap. 5. Also, dynamic wave patterns are
analyzed. Some conclusions were drawn about the localization of useful informa-
tion in seismograms, which are confirmed by the seismograms constructed from the
results of calculations.

In Sect. 7.2.1, a formulation of the problem is discussed, and Sect. 7.2.2 presents
some conclusions illustrated by appropriate figures.

7.2.1 Formulation of the Problem

Seven calculationswere considered, each containing amulti-layered geological envi-
ronment (Fig. 7.1) consisting of 8 layers with different parameters of the medium.
The system of the geological faults was placed into the in the sixth layer.

The seismic characteristics of these layers one can find in Table 7.1. The differ-
ence between models was in the different values of the coefficient K (0.5, 0.6, 0.75,
0.9, 1.0), which connects the parameters inside the faults with the parameters of the
circling geological media (Fig. 7.1). In Eqs. 7.1–7.3, cFaultsP , cGeoP are the speeds of
P-waves, cFaultsS , cGeoS are the speeds of S-waves, ρFaults, ρGeo are densities into the geo-
logical faults and into the geological environment around these faults, respectively.

cFaultsP � K · cGeoP (7.1)

https://doi.org/10.1007/978-3-319-76201-2_5
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Fig. 7.1 The layers into
geological environment and
geological faults

Table 7.1 Seismic characteristics of layers

Layer number Speed of P-waves
(m/s)

Speed of S-waves
(m/s)

Density (kg/m3) Layer
thickness
(m)

1 2170 674 2000 500

2 2130 795 2300 100

3 2500 1090 2200 300

4 2680 1220 2300 100

5 3000 1385 2400 400

6 (layer with faults) 5550 3144 2700 100

7 6000 1250 2800 150

8 6000 1550 2850 4000

cFaultsS � K · cGeoS (7.2)

ρFaults � K · ρGeo (7.3)

The seismograms Vx (horizontal) and Vy (vertical) and module V were con-
structed. As wave patterns, the dependence of the modulus V on the coordinates x, y
is shown. Values of the module V are depicted in colors. The red color corresponds
to some preselected maximum value on the scale, the same everywhere. The blue
color corresponds to the zero value of the module V . In each of the calculations, 8
receiver systems were considered, shown in Table 7.2. Note that the source is always
fixed, located in the center, and situated above the array of the faults.

Also three types of geometry of the faults region were considered. They are
denoted with the following names: “ORIGINAL”, “MEDIUM”, and “MAXIMUM”
fault zones with origin, medium, and maximum lengths of these faults, respectively.
The faults of the original length are geometrically represented in Fig. 7.2, and their
exact parameters can be found in Table 7.3.

The faults of medium length are geometrically represented in Fig. 7.3, and their
exact parameters can be found in Table 7.4. Note that the general topological char-
acter of the fault zone remains the same in comparison with the geological faults
“ORIGINAL”.
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Table 7.2 Characteristics of
the receivers systems

Number of receiver
system

Distance between
receivers (m)

Number of
receivers

0 10 320

1 25 128

2 50 64

3 75 42

4 100 32

5 150 21

6 200 16

7 400 8

Fig. 7.2 Geological faults of
original length, ORIGINAL

Fig. 7.3 Geological faults of
medium length, MEDIUM

The faults of the maximum length considered are represented geometrically in
Fig. 7.4, and their exact parameters can be found in Table 7.5. Note that the general
topological character of the fault zone has changed slightly in comparison with the
faults “ORIGINAL” and “MEDIUM”, although a number of topological features are
conserved.
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Table 7.3 Characteristics of the geological faults, ORIGINAL

Number of fault Length of fault (m) Width of fault (m) Distance between this
fault and the next one

1 25 5 25

2 50 5 25

3 25 5 20

4 75 5 20

5 25 5 20

6 50 5 20

7 25 5 20

8 75 5 20

9 25 5 20

10 100 5 20

11 25 5 20

12 75 5 20

13 25 5 20

14 50 5 25

15 25 5 25

16 25 5 Non defined

Table 7.4 Characteristics of the geological faults, MEDIUM

Number of fault Length of fault (m) Width of fault (m) Distance between this
fault and the next one

1 50 5 25

2 75 5 25

3 50 5 20

4 100 5 20

5 50 5 20

6 75 5 20

7 50 5 20

8 100 5 20

9 50 5 20

10 100 5 20

11 50 5 20

12 100 5 20

13 50 5 20

14 75 5 25

15 50 5 25

16 50 5 Non defined
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Fig. 7.4 Geological faults of
maximum length,
MAXIMUM

Table 7.5 Characteristics of the geological faults, MAXIMUM

Number of fault Length of fault (m) Width of fault (m) Distance between this
fault and the next one

1 50 5 25

2 100 5 25

3 75 5 20

4 100 5 20

5 50 5 20

6 100 5 20

7 75 5 20

8 100 5 20

9 50 5 20

10 100 5 20

11 75 5 20

12 100 5 20

13 50 5 20

14 100 5 25

15 75 5 25

16 50 5 Non defined

7.2.2 Main Conclusions Obtained by Wave Logica

In this section, a study of the influence of the faults length in a geological environment
in the seismograms obtained, as well as the causes of these changes in seismograms
due to the difference in spatial dynamical wave fields was made.

It can be seen from the dynamics of wave patterns that in addition to standard PP,
PS, SP, and PP waves another class of seismic waves is formed in the cluster of the
faults by multiple reflections inside the cluster of the incident P-wave. This class of
waves propagates at an angle to the faults cluster, and does not strictly upward. In
Fig. 7.5, one can see this class of waves occurring after original P-wave passing. This
gives the most significant contribution to the difference between the seismograms
for the cases of faults of different lengths (Figs. 7.6 and 7.7).
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Fig. 7.5 The reflection of original P-wave from the geological faults zone: a without geologi-
cal faults, b geological faults “ORIGINAL”, c geological faults “MIDDLE”, d geological faults
“MAXIMUM”

Fig. 7.6 Systemof receivers№1, 25mbetween receivers, seismogramsof horizontalVx , difference
between the casewithout geological faults and: a geological faults “ORIGINAL”,b geological faults
“MIDDLE”, c geological faults “MAXIMUM”

Fig. 7.7 System of receivers № 1, 25 m between receivers, seismograms of vertical Vy, difference
between the case without geological faults and: a geological faults “ORIGINAL”, b geological
faults “MIDDLE”, c geological faults “MAXIMUM”
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Fig. 7.8 The reflection of S-wave, the approaching of secondary P-wave: a without geological
faults,b geological faults “ORIGINAL”, c geological faults “MIDDLE”,d geological faults “MAX-
IMUM”

Because of the source of seismic waves is located strictly above the cluster of
faults, the largest contribution to the waves reflected from the cluster is made by the
incident P-wave. This regularity is due to the presence of a central decrease in the
amplitude in the incident S-wave (see Chap. 9), in which the cluster of faults occurs.
Next waves in importance after the primary P-wave are called S-wave (see Fig. 7.8).
And the next one is the secondary P-wave, formed as a result of reflection from the
Earth’s surface of the PP-wave reflected from the geological medium around the
faults zone. Note that the approaching of this secondary P-wave is shown in Fig. 7.8.
Reflected from the Earth’s surface of the PS-, SP-, and SS-waves does not make such
a significant contribution also due to the presence in them of a central decrease in
the amplitude. Thus, the focus in this Section is on the P-wave reflection analysis.
Notice that these conclusions are true only for the case then the fault zone is strictly
under the source of seismic waves in the case of typical seismic source is used.

One can see the difference in the wave patterns of reflections of seismic waves
between faults as a function of their length even starting from the instant of time
0.62, 0.64, 0.66, 0.68, 0.7, and 0.74 s in Figs. 7.9, 7.10, 7.11, 7.12, 7.13 and 7.14,
respectively.

Beginning from 0.66 s, a “lattice” of re-reflected waves is formed under the faults
cluster maximally extended horizontally for the faults “MAXIMUM”. This “lattice”
has an average length for the faults “MIDDLE” and minimal for the faults “ORIGI-
NAL” (Fig. 7.11).

https://doi.org/10.1007/978-3-319-76201-2_9
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Fig. 7.9 Spatial dynamical wave pattern, time 0.62 s: awithout geological fault; b geological faults
“ORIGINAL”, c geological faults “MIDDLE”, d geological faults “MAXIMUM”

Fig. 7.10 Spatial dynamical wave pattern, time 0.64 s: a without geological fault, b geological
faults “ORIGINAL”, c geological faults “MIDDLE”, d geological faults “MAXIMUM”

While wave patterns in the volume above the cluster of faults at 0.66 and at 0.68 s
(Fig. 7.12) are topologically similar for the faults “MAXIMUM” and for the faults
“ORIGINAL” (they do not have a central amplitude drop) and differ from the wave
pattern for the faults “MIDDLE” (the central amplitude drop is).

In the future, at a time of 0.7 s (Fig. 7.13), two decays of the amplitude over the
faults are formed for the case of faults “ORIGINAL” and “MIDDLE”. In the case
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Fig. 7.11 Spatial dynamical wave pattern, time 0.66 s: a without geological fault, b geological
faults “ORIGINAL”, c geological faults “MIDDLE”, d geological faults “MAXIMUM”

Fig. 7.12 Spatial dynamical wave pattern, time 0.68 s: a without geological fault, b geological
faults “ORIGINAL”, c geological faults “MIDDLE”, d geological faults “MAXIMUM”

of faults “MAXIMUM”, there is no amplitude decay. However, the decrease in the
faults “MIDDLE” is more significant than for the faults “ORIGINAL”.

At 0.74 s, formation of lateral responses in the geological layer with a layer with
faults can be observed. They are rather weak for the faults “ORIGINAL”, and are
most clearly expressed for the faults “MAXIMUM” (Fig. 7.14).

At 0.78 s (Fig. 7.15), a “lattice” is formed over the faults cluster. This “lattice” is
characterized by a central zone of brightness for the case of the faults “ORIGINAL”
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Fig. 7.13 Spatial dynamical wave pattern, time 0.7 s: awithout geological fault, b geological faults
“ORIGINAL”, c geological faults “MIDDLE”, d geological faults “MAXIMUM”

Fig. 7.14 Spatial dynamical wave pattern, time 0.74 s: a without geological fault, b geological
faults “ORIGINAL”, c geological faults “MIDDLE”, d geological faults “MAXIMUM”

and “MAXIMUM” of a symmetrical character. Note that it is clearly asymmetric for
the case of the faults “MIDDLE”. Also, the brightest zones along the edges of the
“lattice” are observed in the case of the faults “ORIGINAL”. These zones smoothly
transform into an analogue of the head P-wave in the case of the absence of faults.
These zones become less pronounced for cases of the faults “MIDDLE” and “MAX-
IMUM”. The central zone of the “lattice” is asymmetrical in the faults “ORIGINAL”
and approximately symmetrical in the case of the faults “MAXIMUM”. It should
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be noted that this type of waves follows after the exchange PS-wave reflected from
the bottom of faults cluster. At the time 0.92 s, it loses a clearly expressed “lat-
tice” structure for all cases of faults length. In general, the resulting “lattice” layer
is divided into two fronts, propagating at an angle of approximately 45° along the
axes intersecting in the upper part of the geological layer located above the layer
with faults. That is, if on these fronts on seismograms to try to restore the location
of the faults cluster, in the earth surface OXY plane it will be approximately in the
right zone, but along the OZ axis (vertical to the earth surface) the position of the
faults cluster will turn out to be overestimated by approximately 300–400 m. The
propagation speeds of these types of waves formed from the “lattice” coincide for
all cases of the geometry of a faults cluster.

It should be noted that a degree of attenuation of this type of waves greatly exceeds
a degree of attenuation of waves of PP-, PS-, SP-, and SS-waves. However, at this
stage of the research, it is not possible to guarantee, which part of the attenuation of
the wave processes corresponds to physical reality and which is due to the peculiarity
of themethod used and the quality of the discretization. In other words, in connection
with the presence of anisotropy of geological layers, a more pronounced level of this
type of waves can be observed on seismograms than is calculated and studied in this
section. When developing conclusions and recommendations, it should be borne in
mind that the software allows to accurately understand the topological form of the
wave fronts and the time and place of their registration by geological equipment.
However, it is not possible to accurately estimate their amplitude and the ratio of the
given amplitude to the amplitude of the other types of waves.

It should be noted that this feature is a characteristic of numerical simulation
and, in addition to the method used, depends also on the grid used and many other
factors. Therefore, geologists should be wary of the relative amplitudes obtained in
industrial software for direct modelling with a user-friendly interface. Because such
a user-friendly interface puts the distribution of the grid into dependence on software
algorithms, which makes it difficult to analyze the influence of numerical errors on
the attenuation of various types of waves. Notice that typical analytical tests cannot
guarantee that industrial software gives an opportunity for the geologist to develop
right conclusions. This problem can be solved only by understanding the physical
basis of the phenomena under consideration and the peculiarities of the operation
of the difference methods used in the software, simultaneously. This suggests the
method called Wave Logica.

Onemight propose that the attenuation of this additional type ofwaves is occurring
due to the separation of energy into waves of different types and the accompanying
observed increase in the total length of the front of these additional seismic waves.
One can observe this increasing of the total length of the wave front by comparison
Figs. 7.13 and 7.16.

Also it should be noted that in the zone of reflected waves above the faults cluster,
there is no increase in amplitude compared to the case of absence of faults but its
weakening is observed. It is possible to analyze this feature of the topology of wave
fronts in more detail from the moment of 1.16 s (Fig. 7.16). That is, for the case
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Fig. 7.15 Spatial dynamical wave pattern, time 0.92 s: a without geological fault, b geological
faults “ORIGINAL”, c geological faults “MIDDLE”, d geological faults “MAXIMUM”

of no faults, the central amplitude of the PS-wave is quite bright and attenuation is
observed, which is maximal for the case of faults “MAXIMUM”.

On the basis of Wave Logica, even without studying seismograms, it can be
asserted that seismograms-differences should demonstrate greater asymmetry for
faults “ORIGINAL” and “MAXIMUM” than for the case of faults “MIDDLE”,
which is actually observed (Figs. 7.6, 7.7, 7.17 and 7.18).

It should also be noted that the characteristic size of the wavefront of these addi-
tional wave reflections reflected from the cluster is approximately 400–500 m, so
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Fig. 7.15 (continued)

if the receivers are too far away from each other, the faults of the fault zone with
different lengths will be indistinguishable on seismograms-sacristies, which is also
confirmed at the seismograms. See Figs. 7.19, 7.20, 7.21 and 7.22.

It can also be argued that the maximum differences in the response will be on
the seismograms of the line with a slope slightly less than the slope of the P-waves
located in the lateral parts of the seismograms at a distance approximately equal to
the depth of the fracture cluster minus 300–400 m. That is at a distance of 1 km,
which is also confirmed by seismograms (Figs. 7.6 and 7.7). Taking into account that
the maximum removal of the receiver from the source was taken to be 1600 m, it



202 A. V. Favorskaya et al.

Fig. 7.16 Spatial dynamical wave pattern, time 1.16 s: a without geological fault, b geological
faults “ORIGINAL”, c geological faults “MIDDLE”, d geological faults “MAXIMUM”

is necessary to expect the position of these differences at a distance of 1/6 from the
edge of the seismogram.

Also note that the speed of this additional type of reflected waves is slightly less
than the propagation speed of P-waves in the geological environment. Consequently,
it can be expected that they are predominantly P-wave but partly of a mixed nature,
propagating at an angle of 45° to the Earth’s surface. In this connection, one should
expect the maximum visible difference in seismograms representing the horizontal
velocity component Vx, while in seismograms Vy obtained from the faults clusters
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Fig. 7.16 (continued)

of different the length will look identical. This feature is also clearly visible in
seismograms (Figs. 7.6 and 7.7).

In general, it can be educed that applying Wave Logica allows to make many
conclusions being useful in the subsequent analysis of seismograms. This technology
of analysis of the process occurring during seismic prospecting of hydrocarbons and
its results allows to analyze the complex effects that are hardly noticeable by usual
methods, such as the difference in the length of faults in the faults clusters. The
analysis of the spatial dynamical wave patterns permits to determine the seismic
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Fig. 7.17 System of receivers №2, 50 m between receivers, seismograms of horizontal Vx , differ-
ence between the case without geological faults and: a geological faults “ORIGINAL”, b geological
faults “MIDDLE”, c geological faults “MAXIMUM”

Fig. 7.18 System of receivers№2, 50 m between receivers, seismograms of vertical Vy, difference
between the case without geological faults and: a geological faults “ORIGINAL”, b geological
faults “MIDDLE”, c geological faults “MAXIMUM”

Fig. 7.19 System of receivers№4, 100 m between receivers, seismograms of horizontal Vx , differ-
ence between the case without geological faults and: a geological faults “ORIGINAL”, b geological
faults “MIDDLE”, c geological faults “MAXIMUM”

Fig. 7.20 Systemof receivers№4, 100mbetween receivers, seismograms of verticalVy, difference
between the casewithout geological faults and: a geological faults “ORIGINAL”,b geological faults
“MIDDLE”, c geological faults “MAXIMUM”
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Fig. 7.21 System of receivers№6, 200 m between receivers, seismograms of horizontal Vx , differ-
ence between the case without geological faults and: a geological faults “ORIGINAL”, b geological
faults “MIDDLE”, c geological faults “MAXIMUM”

Fig. 7.22 Systemof receivers№6, 200mbetween receivers, seismograms of verticalVy, difference
between the casewithout geological faults and: a geological faults “ORIGINAL”,b geological faults
“MIDDLE”, c geological faults “MAXIMUM”

survey parameters, which are necessary for obtaining the required information about
the geological media and hydrocarbon deposits.

7.3 Wave Simulation in Geological Media

Consider a wave simulation in geological media. Section 7.3.1 presents several seis-
mogeological models for 2D and 3D testing. The calculation of dynamical wave
patterns is discussed in Sect. 7.3.2. The calculated synthetic seismograms obtained
from these dynamical wave patterns are presented in Sect. 7.3.3. Section 7.3.4 gives
some results of the software performance evaluation.

7.3.1 Seismogeological Model for 2D and 3D Testing

During creating algorithms and software for seismic data processing and wave field
modelling, reference seismogeological models are widely used [27]. These models
are freely available and any researcher can use them in their work. One of these
model is the Marmousi model [28]. This model was developed by Institut Francais
du Petrole (IFP) in 1988 and imitates the geological structure of the Hansa basin.
The model was created to calculate the wave field and test new algorithms for data
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processing. The model contains 158 horizons and a series of faults that divide the
entire section into blocks. At the top of the model, there is a layer of water about
32 m thick. The model’s dimensions are 9.2 km in length and 3 km in depth. In this
Section, this model is called 2D-Marmousi.

For the three-dimensional calculations, the salt diapir (SEG/EAGE Salt Model)
modelwas used. Thismodelwas developed by the SEGResearchCommittee andwas
created as a part of the Advanced Computational Technology Initiative in partnership
with United States Department of Energy National Laboratories and Technology
Centers [29]. The model includes 7 horizons of 12 faults, sand lenses. The main
anomalous object in this model is the salt diapir of a complex geometric shape. In
this Section, this model is called 3D-SEG.

The described models allow to test new algorithms for data processing and mod-
elling waves for complex geological conditions. When solving production problems
of exploration geophysics, the construction of such complex models is not always
expedient. Most of the tasks can be solved using simpler models. The most common
types of data in the construction of seismogeological models are the distribution
maps of the depths of seams and wave velocities.

The following model describes the generalized geological model of the Volga-
Ural province. The basis of the model is 12 horizons, the speed of wave propagation
varies from 2500 to 6000 m/s. Within the framework of the simulation, the model
was gradually complicated and supplemented: the surface of the Earth’s relief, the
upper part of the section with variable speed, and a series of rupture disorders and salt
diapir. Based on this geological model, four models 3D-SIMPLE, 3D-FAULTS, 3D-
DEPTH, and 3D-SALT are considered in Sect. 7.3. The ability to include a variety
of objects in the model allows to imitate a wide range of geological settings.

The seismogeologicalmodelMarmousiwas usedwith the followingmathematical
characteristics. The size of the model is 13,601 × 2801 nodes, the grid spacing is
1.25 m. The density data are given in tons per m3. The model was reinterpolated to
a grid of 3401 × 701 t/m3 was converted to kg/m3, all cells with no transverse wave
propagation speed were set to 1 m/s. Figure 7.23 shows the resulting distribution of
the propagation speed of P-waves in the constructed model.

A seismic geological model 3D-SEG was used with the following mathematical
characteristics. The size of the model is 676 × 676 × 201 nodes, the grid spacing is
20m. To create an elastic model, the ratio cS � 0.6cP was adopted. The density of the
medium was assumed to be constant and equal to 2500 kg/m3. Figure 7.24 shows the
resulting distribution of the propagation speed of P-waves in the constructed model.

The seismic geological model 3D-SIMPLE was used as well. This model
includes the altitude maps, P-wave speed in each geological layer, information
on the location, and characteristics of the faults. The dimensions of the model are
540 × 560 × 275 nodes, the grid pitch is 20 m. The physical size of the model is
10,800 × 11,200 × 5500 m. The ratio cS � 0.6cP was considered as valid. The den-
sity of the medium was assumed to be constant and equal to 2500 kg/m3. Figure 7.25
shows an example of a converted depth map (after filtering the non-physically large
values in the source data).
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Fig. 7.23 Distribution of the speed of P-waves in the loaded model Marmousi

Fig. 7.24 Distribution of the speed of P-waves in the loaded 3D-SEG geological model

Figure 7.26 depicts the constructed seismogeological model. Also, the faults
(zones with 10% reduced elastic properties) from the data provided were taken
into account (see Fig. 7.27) and this variant of the 3D-SIMPLE model is called
3D-FAULTS.

The 3D-SIMPLEmodelwas complicated by introducing an account of the relief of
the earth surface and the variability of the velocities of the longitudinal and transverse
waves in the upper layer along the horizontal coordinates. Figure 7.28 shows the
speed distribution and in Fig. 7.29 represents the type of model taking into account
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Fig. 7.25 An example of a
processed depth map

Fig. 7.26 Distribution of the
propagation speed of
P-waves in the loaded model
3D-SIMPLE

Fig. 7.27 Position of faults
in the loaded model
3D-FAULTS

the topography in the complicated version of model 3D-SIMPLE. In this Section,
this model is called 3D-DEPTH.

In addition, some calculations were conducted on the model obtained by compli-
cating the previously constructed 3D-SIMPLEmodel. Figure 7.30 is a sectional view
of the final geological model. It includes a salt dome (object of rotation). The speed
of P-waves in the object is 4700 m/s. Hereinafter, this model is called 3D-SALT in
this Section.
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Fig. 7.28 Map of speeds in
the near-surface layer of
model 3D-DEPTH

Fig. 7.29 Model
3D-SIMPLE with regard to
topography

Fig. 7.30 Geological model
3D-SALT

7.3.2 Calculation of Seismic Wave Patterns

For the models constructed in the previous Sect. 7.3.1, the calculations have been
made simulating the seismic prospecting process and obtained wave patterns. For
the 2D-Marmousi model, two calculations were made: with a point source and with
a flat front of a P-wave (analog of zero-offset seismograms). Receiving points were
set at a depth of 450 m with a step of 12.32 m across the entire integration area (a
total of 1379 geophones). The time function of the source is a 30 Hz Ricker wavelet.
The time step was 1 ms, and the total number of steps was 5000. Figure 7.31 shows
the wave patterns obtained in the course of numerical calculations.
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For the 3D-SEGmodel, two calculations were made: with a point source and with
a flat front of the compressionalwave (analog of zero-offset seismograms). Receiving
points were set at a depth of 20 m in steps of 20 m across the entire integration area
(a total of 676 seismic receivers). The time function of the source is a 30 Hz Ricker
wavelet. The time step is 1 ms, and the total number of steps is 4000. Figure 7.32
shows the wave patterns obtained in the set of numerical calculations.

For the 3D-SIMPLE model, two calculations were made with and without faults
(the thickness was 20 m). They are called 3D-SIMPLE and 3D-FAULTS, respec-
tively. The point source was set at a depth of 20 m. The receiving points were set
in accordance with the transmitted data, simulating the borehole observations. The
time function of the source is a 30 Hz Ricker wavelet. The time step is 3 ms, and
the total number of steps is 1000. Figure 7.33 shows the wave patterns obtained by
numerical calculations for 3D-SIMPLE geological model, while Fig. 7.34 represents
wave patterns for 3D-FAULTS geological model.

For the model 3D-SALT, the calculation of the wave field with a point source of
30 Hz (Riker wavelet), buried at 20 m, was performed. The receiving points were
also buried 20 m and were located throughout the Earth’s surface. Figure 7.35 shows

Fig. 7.31 The distribution of the velocity modulus in the medium for the case of a plane wave
(the top half of the figures) and for the case of the point source (the bottom half of the figures) at
successive instants of time, model 2D-Marmousi: a step 3, b step 5

Fig. 7.32 Distribution of the velocity modulus in the medium for 3D-SEG model in the case of:
a plane wave, b point source
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Fig. 7.33 Examples of distribution of the velocity modulus in the medium for 3D-SIMPLE model

one section OXZ, illustrating the propagation of waves in a geological array. 1000
steps are taken with an interval of 3 ms. Based on the calculated wave patterns, an
area seismogram was generated.

7.3.3 Calculation of Seismograms

For the models constructed using seismic wave fields calculated in the previous
Sect. 7.3.2, synthetic seismograms were obtained. Figures 7.36 and 7.37 show the
seismograms plotted along the vertical components of the velocity vector for the
seismogeological model 2D-Marmousi.

In Figs. 7.38 and 7.39, the seismograms plotted along the vertical components of
the velocity vector for the model 3D-SEG are depicted.

Figure 7.40a, b show the seismograms plotted along the vertical components of
the velocity vector for the models 3D-SIMPLE and 3D-FAULTS. The difference of
these two seismograms was calculated and represented in Fig. 7.40c in scale 1:100.

Also, a calculation was carried out in a more complicated model taking into
account the velocity gradient in the upper layer and topography (3D-DEPTHmodel).
The source is a plane wave of a Ricker wavelet with a frequency of 30 Hz. The
receivers are buried 20m. The time step is 3ms, the calculation time is 3 s. Figure 7.41
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Fig. 7.34 Examples of distribution of the velocity modulus in the medium for 3D-FAULTS model

Fig. 7.35 Elastic waves in
the model 3D-SALT

shows a seismogram constructed based on the results of calculations for the 3D-
DEPTH model.

For the 3D-SALT geological model, the calculation of the 2D seismic survey was
performed, in which the sources were set in 50m increments. Themonitoring system
is central and symmetrical. Maximum removal of the PP-PV equals 3500 m, while
the minimum removal of the PP-PV is 40 m. The record length is 5 s, the sampling
step is 2 ms. Coordinates of the first source in the OXY plane were 4000, 4000 m.
70 sources were further simulated in 40 m steps in each of the axes. A total of 70
calculations were made. Figure 7.42 shows the resulting seismogram for a fixed
source.
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Fig. 7.36 Seismograms constructed from the vertical component of velocity for a flat front, geo-
logical model 2D-Marmousi

Fig. 7.37 Seismograms constructed from the vertical component of velocity for a point source,
geological model 2D-Marmousi

Fig. 7.38 Seismograms constructed from vertical component of the velocity flat front, geological
model 3D-SEG
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Fig. 7.39 Seismograms constructed from vertical component of the velocity for a point source,
geological model 3D-SEG

Fig. 7.40 Seismograms constructed from the vertical component of velocity: a 3D-SIMPLEmodel,
b 3D-FAULTSmodel, c difference seismogram (for a clear visualization in seismic signals the scale
1:100 was used)

Fig. 7.41 Seismogramconstructed by the vertical component of velocity for the case of 3D-DEPTH
geological model
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Fig. 7.42 Seismogram for
2D seismic survey, 3D-SALT
geological model

Fig. 7.43 Seismogram for
the vertical seismic profiling,
3D-SALT geological model

The calculation of the vertical seismic profiling experiment [30] was performed,
in which the receiving points are located in the well every 10 m. Several sources
were used on the distance 3500 m with about 100 m. The sources were located on
the surface with a Ricker wavelet with a frequency of 30 Hz. The time step is 3 ms,
the total number of steps is 1000. Figure 7.43 shows a seismogram for a fixed position
of the source of seismic waves.
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Table 7.6 Software performance evaluations

Geological
model

Nx × Ny × Nz
nodes

Nt time steps Total time (s) 1 core calculation
time (h)

2D-Marmousi 3401 × 701 5000 5 0.3

3D-SEG 676 × 676 × 201 4000 4 7

3D-SIMPLE 540 × 560 × 275 1000 3 2

7.3.4 Software Performance Evaluation

The established evaluations of the program time for all the above calculations are
presented in Table 7.6.

The conducted evaluations showed that a computational speed is acceptable for
software based on the grid-characteristic method. Therefore, the designed software
might be used for performing calculations of themodelling of spatial dynamic seismic
wave fields and synthetic seismograms for geological models with the complexity
characteristic compared with complexity of real oil-bearing deposits.

7.4 Conclusions

In this chapter, it is shown that grid-characteristic method allows to model various
types of geological media in 2D and 3D cases taking into account the curvilinear
interfaces between different geological rocks, as well as the faults and fractures of
the complex topology. It is also shown that it is possible to build the seismograms
for various seismic survey systems including 2D seismic survey, 3D seismic survey,
and vertical seismic profiling based on the spatial dynamic wave patterns obtained
using the grid-characteristic method. Also in this chapter, a comparative analysis
of software based on the grid-characteristic method for solving various geophysical
problems is carried out.

In this chapter, a study of faults zones of three types of their topology and different
type of geological environment within the faults were performed, as well. A detailed
analysis of spatial dynamic wave patterns is carried out and predictive conclusions
about the nature of the seismograms, which were actually confirmed in the respective
seismograms, were developed. The possibility to derive the predictive conclusions
about seismograms based on the analysis of spatial wave patterns is demonstrated in
this chapter.
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Chapter 8
Migration of Elastic Wavefield Using
Adjoint Operator and Born
Approximation

Oleg Ya. Voynov, Vasiliy I. Golubev, Michael S. Zhdanov and Igor B. Petrov

Abstract This chapter presents a new method of migration of the elastic wavefield.
It is based on the Born approximation of the forward modelling operator for the
elastic, which is obtained as an extension of the Born approximation for the acoustic
field to the case of the elasticwavefield propagation.We present a detailmathematical
derivation of themigration operators for the acoustic and elastic cases. The numerical
experiments based on these operators are conducted for a set of syntheticmultilayered
modelswith curvilinear boundaries between the layers.Wealsopresent a comparative
study of the migration images produced by the migration of the acoustic and elastic
wavefields and examine the sources of false boundaries appeared in some of these
images.
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8.1 Introduction

The main goal of seismic survey is a creation of a reliable model of the subsurface
geological medium. The rigorous approach to the solution of this problem is based
on the inversion of the seismic data into the physical properties of the subsurface.
However, inversion of seismic data is a very challenging problem, which meets
significant difficulties related to the nonuniquness and instability of mathematical
inversion problems. Another approach is based on the migration of the seismic
data from the surface of the observation downward within the lower half space.
This approach has found wide practical applications due to its relative simplicity
and robustness of the produced subsurface seismic images. Untill recently, most
of the migration algorithms were based on the solution of the wave equations
for the acoustic model of the seismic field. This approach, however, ignores the
true physics of the seismic wave propagation within the rock formations. A more
accurate approach is based on using the elastic field equations for the solution of
this problem. In this chapter, we demonstrate how this approach can be used for
developing the algorithms of the elastic field migration in the geological media.

We construct the forward modelling operator and the migration operator (adjoint
to the forward one) for an elastic field using the Born approximation. Our deriva-
tion follows a straightforward procedure described in [1] for the acoustic case. The
validity of the developed method was tested by using the direct simulation of the
wave propagation in slightly inhomogeneous media and by analysis of the migration
images for synthetic models. A comparison of the results produced for the acoustic
and elastic cases is presented as well.

The chapter is organized as follows. The basics of seismicmigration are discussed
in Sect. 8.2. The derivations of forward modelling and adjoint migration operators
for the acoustic and elastic cases are performed in Sects. 8.3 and 8.4, respectively.
The examples of migration images produced by the developed algorithms and their
comparisons are given in Sect. 8.5. Section 8.6 discusses the synthetic seismograms
and the sources of the false boundaries in migration images. Section 8.7 concludes
the chapter.

8.2 Basics of Seismic Migration

The principles of geometrical migration of seismic data have been used for interpre-
tation since the 1960s. The theoretical principles of this process based on the use of
the wavefront charts and diffraction curves was presented in classical work [2]. Fur-
ther developments were made in the works of Claerbout [3–5], who first formulated
a finite-difference algorithm for migration based on the scalar wave equation. In the
works by French [6], Schneider [7], and Zhdanov et al. [8], the Kirchhoff integral
method for acoustic wave migration was developed. In the monograph by Zhdanov
[9] the Kirchhoff integral method and the corresponding migration algorithms were
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extended to the elastic wavefields as well. The frequency wavenumber migration
algorithm was proposed independently in [10]. In works [11–13], the Born approx-
imation [14] was used to develop the forward modelling operator for a scattering
field. The Reverse Time Migration (RTM) was introduced in [15–17]. It relies on
the full waveform equation and takes into account the complex phenomena of the
wave propagation. The researchers made many efforts to eliminate the drawbacks
of the available migration algorithms. For example, in [18] a modification of the
Kirchhoff migration operator was proposed to image the steep dips while including
high frequencies. A ray-Born method was proposed in [19–21] to take into account
a non-uniform background medium.

In a classical marine survey, the seismic source is placed in the water and the
pressure fluctuations are recorded by the receivers. Therefore, a purely acoustic-
wave equation is a reasonable approximation to describe the P-waves propagation
through the water layer that carry major information about the subsurface structure.
However, for the sea-bottom receivers and/or land surveys, the S-waves play an
important role in the observed seismic wave phenomena. In such a case, applying
the migration algorithm based on the elastic wave equation is essential. Most of the
publications, cited above, treat the geological formation as an acoustic medium. In
this case, only the pressurewaves (P-waves) exist in the subsurface volume.However,
the process of propagation of seismic waves may be described more accurately using
the elastic medium model. One way to consider the different elastic waves is to
calculate a migration image using acoustic algorithm for the PP, PS, SP, and SS
waves separately [22–26]. However, the use of the full waveform (elastic) migration
represents a more rigorous approach. For example, highly dipping subsalt events
around the salt keel are found to be imaged by elastic migration much better than by
the acoustic one [27].

A significant research has been conducted on the migration of elastic field over
the years. Kuo and Dai [28] presented Kirchhoff multicomponent migration for the
case of non-coincident source and receiver. This approach was successfully applied
to a synthetic Vertical Seismic Profiling (VSP) data [29]. An elastic type of Kirchhoff
multicomponent migration was introduced in [9, 30]. Zhe and Greenhalgh proposed
the elastic migration by extrapolating the displacement potential [31]. In [32], an
algorithm of 3D elastic Kirchhoff prestack depth migration for the VSP data was
introduced, which used the complete wavefield recorded by three components as
an input. The extension of the Reverse-Time Migration (RTM) to the elastic and
anisotropic cases was investigated in [33, 34], respectively. To account for elastic
effects, several research groups have developed modified imaging principles using
divergence and curl operators to separate compressional and shear waves (e.g., [35,
36]). The Born approximation was applied to the elastic isotropic medium in [37,
38], transversely isotropic medium in [39], and fractured medium in [40]. In these
latest works, the migration was treated as a first step of inversion formulated in a
least-square sense.

The general mathematical approach to constructing the migration algorithms can
be summarized as follows [1]. Let us approximate the forward modelling problem
for seismic wavefield by the following linear operator equation:
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d � Lm, (8.1)

where d are the seismic data,m are the model parameters,L is the forwardmodelling
linear operator. In this case, the migration field is given by the following formula
[41]:

mmigr � L∗d, (8.2)

where the adjoint operator L∗ can be obtained from the equation [1, 42]

(
L∗d · m)

m � (d · Lm)d . (8.3)

Here (·) denotes the dot product in the corresponding Hilbert spaces of the models
or data.

Themathematical derivations of the forward and adjoint operators for the acoustic
and elastic cases is given in Sects. 8.3 and 8.4, respectively.

8.3 Migration of Acoustic Wavefield

This section presentsmathematical derivation of the forward and adjoint operators for
the acoustic case. Themathematicalmodel of acousticmedium is given in Sect. 8.3.1.
We derive in Sect. 8.3.2, the forward and adjoint operators for quasi-homogeneous
space using Born approximation. The formulae for operators are simplified for the
case of a point source. In Sect. 8.3.3, a quasi-homogeneous half space is considered.

8.3.1 Acoustic Medium

Consider a simplemodel of acoustic mediumwith constant mass density. In this case,
the following acoustic wave equation describes a propagation of seismic waves:

�P − s2∂2
t P � −Fe, (8.4)

where P is the pressure field, Fe is the strength of the external source of energy, s is
the slowness of the wave propagation, reciprocal to the velocity.

In a certain domain V , slowness of the medium can be represented as a sum of the
background and anomalous components. Thus, the total wavefield can be represented
as a sum of the incident and scattered fields:

s2 � s2b + �s2, �s2
∣∣
r /∈V � 0, P � Pi + Ps,
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�Pi − s2b∂
2
t P

i � −Fe, �Ps − s2b∂
2
t P

s � �s2∂2
t

(
Pi + Ps

)
. (8.5)

8.3.2 Born Approximation for Homogeneous Space

With the background medium being homogeneous infinite space(
sb � const, V � R

3
)
, the fundamental solution of the equations under con-

sideration takes the following form [1]:

G
(
r

′
, t

′ |r, t
)

� δ
(
t

′ − t − sbR
′)

4πR ′ , (8.6)

where Ri � ∣∣ri − r
∣∣.

Therefore, the incident and scattered fields can be written as follows:

Pi
(
r′, t

) �
∫

V

Fe
(
r,t − sbR′)

4πR′ dV,

Ps
(
r′, t

) � −
∫

V

∂2
t

[
Pi

(
r,t − sbR′) + Ps

(
r,t − sbR′)]

4πR′ �s2 (r) dV . (8.7)

The forward modelling operator can be obtained from the last expression using
Born approximation [1, 43], if the scattered field is negligibly small inside V in
comparison with the background field:

Ps,B
(
r′, t

) � −
∫

V

∂2
t P

i
(
r,t − sbR′)

4πR′ �s2 (r) dV . (8.8)

Let D be a Hilbert space of acoustic field data recorded over time interval, T , on
the surface of observations, S, with the following metric:

(d1 · d2) �
∫

S

∫

T

d1
(
r′, t

)
d2

(
r′, t

)
dt dS, (8.9)

and M be a Hilbert space of medium models given in the domain V with the metric

(m1 · m2) �
∫

V

�s21 (r) �s22 (r) dV . (8.10)

In this case, the migration operator can be represented as follows [1, 42]:
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�s2migr (r) � −
∫

S

∫

T

∂2
t P

i
(
r, t − sbR′)

4πR′ d
(
r′, t

)
dt dS· (8.11)

We can obtain a simplified expression for the migration operator for the case,
where the external energy source is a point source:

Fe (r, t) � δ (r − r0) f (t) . (8.12)

In this case, an expression for the incident field takes the following form:

Pi (r, t) � f (t − sbR0)

4πR0
. (8.13)

The forward modelling and migration operators are given by the following for-
mulae, respectively:

Ps,B
(
r′, t

) � −
∫

V

f ′′ (t − sbR′ − sbR0
)

16π2R′R0
�s2 (r)dV (8.14)

and

�s2migr (r) � −
∫

S

∫

T

f ′′ (t − sbR′ − sbR0
)

16π2R′R0
d

(
r′,t

)
dt dS. (8.15)

8.3.3 Homogeneous Half Space

With the background medium being a homogeneous infinite half space
(sb � const, V � {(x, y, z) : z ≥ 0}) and the surface z ≥ 0 being a free surface,
the fundamental solution of the equations under consideration takes the following
form:

G
(
r′, t ′|r, t) � δ

(
t ′ − t − sbR′)

4πR′ − δ
(
t ′ − t − sbR′)

4πR′ ,

r � (x, y,−z)T , Ri � ∣
∣ri − r

∣
∣ , (8.16)

where notation r for a “mirrored” position of vector is introduced.
As in the case of homogeneous full space, one can obtain the expressions for

forward modelling and migration operators, as follows:
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Ps,B
(
r′, t

) � −
∫

V

⎡

⎢
⎢
⎣

f ′′(t−sb R′−sb R0)
R′R0

− f ′′(t−sb R′−sb R0)
R′R0

+
f ′′(t−sb R′−sb R0)

R′R0
− f ′′(t−sb R′−sb R0)

R′R0

⎤

⎥
⎥
⎦

�s2(r)dV
16π2

, (8.17)

�s2 (r) � −
∫

S

∫

T

⎡

⎢⎢
⎣

f ′′(t−sb R′−sb R0)
R′R0

− f ′′(t−sb R′−sb R0)
R′R0

+
f ′′(t−sb R′−sb R0)

R′R0
− f ′′(t−sb R′−sb R0)

R′R0

⎤

⎥⎥
⎦
d

(
r′,t

)
dt ds

16π2
. (8.18)

8.4 Migration of Elastic Wavefield

In this section, we present a mathematical derivation of the forward modelling and
adjoint operators for the elastic medium. The mathematical model of elastic medium
is given in Sect. 8.4.1. In Sect. 8.4.2, the forward and adjoint operators are derived
for a quasi-homogeneous medium using the Born approximation. In Sect. 8.4.3, the
formulae for the operators are simplified for the case of a polarized point source. In
Sect. 8.4.4, a quasi-homogeneous half space is considered.

8.4.1 Elastic Medium

Consider a medium, where a propagation of seismic waves is described by the Lamé
equation [1]:

�u − ∂2u
∂t2

� − 1

ρ
fe, � � c2p∇∇ · −c2s∇ × ∇×, (8.19)

where cp, cs are the pressure and shear wave velocities, respectively; ρ is a mass
density of the medium; fe is a strength of the external force per unit volume applied
to the elastic body; and u is a displacement field.

Let us use for the certain vector fields (potential or solenoidal) and also for the
certain velocities (of the pressure or shearwaves) the lowerGreek letter subscript, e.g.
uα, α ∈ {p, s} ,where up is potential field, us is solenoidal field; and cα, α ∈ {p, s} ,

where cp and cs are the velocities of the pressure and shear waves, respectively. As
in the acoustic case, the parameters of the medium can be represented in domain V
as a sum of the background and anomalous components, and the total wavefield is a
sum of the incident and scattered fields:

c2α � c2α,b + �c2α, �c2α
∣
∣
r /∈V � 0, � � �b + ��, u � ui + us,

�bui − ∂2ui

∂t2
� − 1

ρ
fe, �bus − ∂2us

∂t2
� −��(ui + us). (8.20)
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The following notations will be used: s � c−1, Di
p � ∇ i∇ i ·, Di

s � −∇ i × ∇ i×,

∇ i � (
∂xi ∂yi ∂zi

)T
, Ri � ∣∣ri − r

∣∣, Ri � |ri − r|.

8.4.2 Born Approximation for Homogeneous Space

With the background medium being homogeneous infinite space(
cα,b � const, V � R

3
)
, the fundamental solution of the equations under con-

sideration takes the following form [1]:

GL
α � Dα�α � D′

α�α, �α � {
χ

(
t ′ − t − sα,b R

′) − χ
(
t ′ − t

)} I
4πR′ , (8.21)

where I is an identity tensor, and χ (t) � max (0, t).
Hence, the incident and scattered fields are given by the following formulae:

uiα
(
r′, t ′

) �
∫

V

+∞∫

−∞

1

ρ(r)
fe (r, t) · GL

α

(
r′,t ′|r,t) dt dV, (8.22)

us
α

(
r′, t ′

) �
∫

V

+∞∫

−∞

{
�� (r)

[
ui (r,t) + us (r,t)

]} · GL
α

(
r′,t ′|r,t)dt dV . (8.23)

If the scattered field is negligibly small inside V in comparison with the back-
ground field, the forward modelling operator can be obtained from the last expres-
sion using the Born approximation. Considering the properties of the incident field
Dαuiα � ∇2uiα , we obtain

us,B
α

(
r′,t ′

) �
∑

β

∫

V

+∞∫

−∞
�c2β (r) ∇2uiβ (r, t) · GL

α

(
r′, t ′|r, t) dt dV · (8.24)

Let D be a Hilbert space of the wavefield data recorded at times T on the surface
of observations, S, with the following metric:

(d1 · d2) �
∫

S

∫

T

d1
(
r′, t

) · d2
(
r′, t

)
dt dS, (8.25)

and M be a Hilbert space of the models given in domain V with the metric

(m1 · m2) �
∫

V

[
�c2p,1 (r) �c2p,2 (r) + �c2s,1 (r) �c2s,2 (r)

]
dV . (8.26)
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Thus, the migration operator is given by the following formula:

�c2α,migr (r) �
∫

S

∫

T

+∞∫

−∞

{∇2uiα (r, t)
} · GL

(
r′, t ′|r,t) · d (

r′, t ′
)
dt dt ′ ds· (8.27)

8.4.3 A Polarized Point Source

Let us confine ourselves to consideration of the case, where the external energy
source is a polarized point source:

fe (r, t) � δ (r − r0) F (t) f � δ (r − r0) f ′′ (t) f . (8.28)

Let us restrict our consideration to wavelets, f (t) , with the property

[
f
(
t ′ − t

) − f ′ (t ′ − t
)
t
] ∣∣0

t�+∞ � f
(
t ′
)
. (8.29)

Considering the vector identity for an arbitrary function g (r) and a constant vector
f,

f · [Dα (g (r) I)] � Dα (g (r) f) , (8.30)

and the identity,

+∞∫

−∞
χ

(
t ′ − t

)
f ′′ (t) dt � [

f
(
t ′ − t

) − f ′ (t ′ − t
)
t
] ∣∣0

t�+∞ � f
(
t ′
)
, (8.31)

expression (Eq. 8.22) for the incident field can be cast in the following form:

uiα (r, t) � Dαφα (r, t) ,φα (r, t) � f
(
t − sα,b R0

) − f (t)

4πρ (r0) R0
f . (8.32)

Considering the following identity,

∇2 f
(
t − sα,b R0

) − f (t)

R0
� F

(
t − sα,b R0

)

c2α,b R0
, (8.33)

one can simplify expressions ∇2uiα as follows:

∇2uiα (r, t) � Dα

F
(
t − sα,b R0

)
f

4πc2α,bρ (r0) R0
� 1

ρ (r0)
D0

α

F
(
t − sα,b R0

)
f

4πc2α,b R0
. (8.34)
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Therefore, we have:

+∞∫

−∞
∇2uiβ (r, t) · GL

α

(
r′, t ′|r, t)dt � 1

ρ (r0)
D′

αD
0
β

f
(
t ′ − sβ,b R0 − sα,b R′)

16π2c2β,b R0R′ f ·

(8.35)

Thus, formula for forward operator takes the following form:

us,B
α

(
r′, t ′

) �
∑

β

D′
αD

0
β

ρ (r0)

∫

V

�c2β (r)
f
(
t ′ − sβ,b R0 − sα,b R′)

16π2c2β,b R0R′ fdV, (8.36)

and formula for migration operator can be written as follows:

�c2β,migr (r) �
∑

α

∫

S

∫

T

d
(
r′, t ′

)

ρ (r0)
· D′

αD
0
β

f
(
t ′ − sβ,b R0 − sα,b R′)

16π2c2β,b R0R′ fdt ′ dS· (8.37)

8.4.4 Homogeneous Half Space

With the background medium being a homogeneous infinite half space(
cα,b � const, V � {(x, y, z) : z ≥ 0}) and the surface z ≥ 0 being a free surface,
the fundamental solution of equations under consideration takes the following form:

GL ,H
α

(
r′, t ′|r, t) � D

′
α

[
�α − �α

]
, �α � {

χ
(
t ′ − t − sα,b R

′) − χ
(
t ′ − t

)} I
4πR′

r � (x, y − z)T , Ri � ∣
∣ri − r

∣
∣ · (8.38)

As in the case of homogeneous full space, one can obtain the expressions for the
incident wavefield:

uiα (r, t) � D0
α

f
(
t − sα,b R0

) − f (t)

4πρ (r0) R0
f − D0

α

f
(
t − sα,b R0

) − f (t)

4πρ (r0) R0
f . (8.39)

Finally, the forward modelling and migration operators can be summarized as
follows:

us,B
α

(
r′, t ′

) �
∑

β

D′
α

ρ (r0)

∫

V

�c2β (r)
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D0
β

[
f
(
t ′ − sβ,b R0 − sα,b R′)

16π2c2β,b R0R′ − f
(
t ′ − sβ,b R0 − sα,b R′)

16π2c2β,b R0R′

]

+ D0
β

[
f
(
t ′ − sβ,b R0 − sα,b R′)

16π2c2β,b R0R′ − f
(
t ′ − sβ,b R0 − sα,b R′)

16π2c2β,b R0R
′

]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

fdV, (8.40)

�c2β,migr (r) �
∑

α

∫

S

∫

T

d
(
r′, t ′

)

ρ (r0)
.D′

α

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D0
β

[
f
(
t ′ − sβ,b R0 − sα,b R′)

16π2c2β,b R0R′ − f
(
t ′ − sβ,b R0 − sα,b R′)

16π2c2β,b R0R′

]

+ D0
β

[
f
(
t ′ − sβ,b R0 − sα,b R

′)

16π2c2β,b R0R
′ − f

(
t ′ − sβ,b R0 − sα,b R′)

16π2c2β,b R0R′

]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

fdt ′dS,

(8.41)

where D0
β is obtained from D0

β by substitution ∂z0 → −∂z0 .

Fig. 8.1 Model “Dipping Reflectors”

Fig. 8.2 Model “Circle”
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8.5 Comaprison of Migration Images for Acoustic
and Elastic Models

In this section, we present a comparison of the acoustic and elastic Born migration
algorithms. For this purpose, we run a number of numerical experiments of for-

Fig. 8.3 Model “Marmousi”

Fig. 8.4 Migration images for “Dipping Reflectors”: a acoustic migration image, b p-component,
c s-component
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Fig. 8.5 Migration images for “Circle”: a acousticmigration image,bp-component, c s-component

ward modelling and migration imaging for weakly inhomogeneous media using the
computer codes based on Eqs. 8.40, 8.41 and 8.18.

The models of the media used in these numerical tests are shown in Figs. 8.1, 8.2
and 8.3. In these figures, the white color corresponds to the anomalous features of
the medium, and the grey color corresponds to the background medium. All compu-
tations were carried out for 2D models (with one of the horizontal coordinates fixed,
i.e. y � 0). Each model is 10 km wide, 2.5 km deep and has the background values
of pressure and shear wave velocities equal to 2.5 km/s and 1.25 km/s, respectively.
The inhomogeneities have the value of contrast �c2α/c2α,b equal to 1%. The mass
density of media at the level of geophones equals to 2500 kg/m3.

For these models, synthetic zero-offset data were obtained based on Eq. 8.40 with
the following parameters: the vertically polarized f � (0, 0, 1)T geophones were
located at a level of z � 15 m every 10 m across the horizontal axis; the source pulse
was the Ricker wavelet F (t) � (

1 − 2π2 f 2Mt
2
)
e−π2 f 2M t2 , fM � 25 Hz; the data

were recorded each 2 ms during a period of 4 s. A detail discussion of the seismic
sections is given in Sect. 8.6. It should be noted that for 2Dmodels, the y-component
of the data is equal to zero.
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Fig. 8.6 Migration images for “Marmousi”: a acoustic migration image, b p-component, c s-
component

The migration images for the z-component of the scattered field (the x and y
components are considered being equal to zero) are shown in Figs. 8.4, 8.5 and 8.6.
Each figure consists of three parts: the acoustic migration images (Figs. 8.4a, 8.5 and
8.6a) obtained based on Eq. 8.18 and the elastic migration images obtained based on
Eq. 8.41 for p-component (Figs. 8.4b, 8.5 and 8.6b) and for s-component (Figs. 8.4c,
8.5 and 8.6c). The step of the discretization grid was 10 m.

The data shown in Figs. 8.4, 8.5 and 8.6 were initially processed. To eliminate the
time fade-out of the data and the depth fade-out of the images, they were weighted
according to the following formulae:

dadjusted (
r′, t ′

) � d
(
r′, t ′

)
/
√
L (r′, t ′|r)L∗ (r|r′, t ′),

madjusted (r) � m (r) /
√
L∗ (r|r′, t ′)L (r′, t ′|r). (8.42)
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Fig. 8.7 The p-components of elastic migration images for model “Dipping Reflectors” calculated
for: a vertical component, b vertical and horizontal components (false boundaries are marked with
arrows)

Fig. 8.8 The s-components of elastic migration images for model “Dipping Reflectors” calculated
for: a vertical component, b vertical and horizontal components

For Model 3, the maximum values of a, p, and s images were calculated, then
the minimal of them was denoted as Kn , finally, all three images were divided by a
factor of 0.5Kn to make a better comparison

One can see that both methods locate the interfaces, in general. The acoustic
and p-component images have a poor resolution of the steep interfaces (though, p-
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Fig. 8.9 The p-components of elastic migration images for model “Marmousi” calculated for: a
vertical component, b vertical and horizontal components

Fig. 8.10 The s-components of elastic migration images for model “Marmousi” calculated for: a
vertical component, b vertical and horizontal components

component has slightly better resolution) and a good resolution of sloping, while the
s-component image has the opposite properties. Bothmethods show false boundaries,
which are more strongly pronounced in the acoustic images than in the elastic ones.
The sources of the false boundaries are discussed in Sect. 8.6.
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Fig. 8.11 Zero-offset data for model “Dipping Reflectors”: a x-component, b z-component

To use additional information about the medium contained in the horizontal com-
ponents of the scattered field, one can apply the elastic migration method to all three
components. The migration images calculated in this way are present in Figs. 8.7,
8.8, 8.9 and 8.10. Each figure consists of an image calculated for the vertical com-
ponent only (Figs. 8.7a, 8.8, 8.9 and 8.10a) and an image calculated for both the
vertical and horizontal components (Figs. 8.7b, 8.8, 8.9 and 8.10b).

These figures show that such an approach increases the magnitude of the
false boundaries in the p-component, but improves the image produced by the s-
component. Thus, we can suggest a two-pass migration algorithm, which uses the
p-component of the z-component migration only and the s-component for the full
wavefield migration only.

8.6 Synthetic Seismograms and the Sources of False
Boundaries

Figures 8.11, 8.12 and 8.13 show the seismograms of the x- and z-components for
the models discussed in Sect. 8.5. All images in these figures were processed as
follows: (a) initially, the maximum value of an image, Kn, was calculated; (b) then
the x-component images were divided by a factor of 0.5Kn and the z-component
images were divided by a factor of 0.2Kn .

To understand the sources of the false boundaries in migration images, let us
discuss in detail a simple model shown in Fig. 8.14 and the corresponding zero-
offset data shown in Fig. 8.15. This model contains one flat inclined boundary only,
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Fig. 8.12 Zero-offset data for model “Circle”: a x-component, b z-component

Fig. 8.13 Zero-offset data for model “Marmousi”: a x-component, b z-component

but each component of the scattered field has three reflections, which, from the top
to the bottom, are caused by the p-waves, p ↔ s transitional waves, and by the
s-waves, respectively. Each reflection consists of two parts: the earliest one is caused
by the direct waves and the latest one is caused by the waves reflected from the
surface of observation.
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Fig. 8.14 Model with one dipping reflector

Fig. 8.15 Zero-offset data for model with one dipping reflector: a p-component, b s-component

Let’s checkwhere each of these reflectionsmoves after themigration. In Fig. 8.16,
the color of a boundary corresponds to its source, parts of images are interleaved to
prevent overlapping, and false boundaries are marked by numbers in the images
produced by the p- and s-componens.

Since the acoustic migration algorithm uses just one wave velocity, the delay of
the reflection defines uniquely the depth of the image of the corresponding boundary.

The same applies to boundaries 4, 5 and 6, 7 in the migration image of the p-
component of the elastic wavefield. Boundaries 1 and 2 are caused by the p-waves,
and boundary 3 is caused by the s-waves, back-propagated with the velocity of
transitional waves.

In the elastic migration image produced by the s-component, the p-waves become
s-waves, which causes boundaries 1 and 3; p-waves become transitional, which
causes boundary 2; the transitional waves become s-waves, which causes boundary
4, and the s-waves become transitional, which causes boundaries 5 and 6.
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Fig. 8.16 Different boundaries in migration image: a acoustic, b elastic p, c elastic s

8.7 Conclusions

In this chapter, we have derived the expressions for forward seismic modelling and
migration operators for quasi-homogeneous acoustic and elastic media based on the
Born approximation and considering a permanently polarized point source. For a
set of low-contrast geological models, a comparison between acoustic and elastic
methods has shown that the straightforward expression of migration operator for the
acoustic case canbe easily extended to the elastic isotropic case aswell. Themigration
images in the elastic case show the correct location of the reflection boundaries and
produce less pronounced false boundaries as compared to the images in the acoustic
case.
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Chapter 9
Migration of Elastic Fields Based
on Kirchhoff and Rayleigh Integrals

Alena V. Favorskaya and Michael S. Zhdanov

Abstract Seismic method is one of the main methods of geophysical exploration.
Interpretation of seismic data requires their transformation into the images of the
subsurface geological formation. These images can be produced by migration of
the observed seismic data from the surface of observation in the lower half space.
The traditional migration algorithms are based on the solution of the wave equation
for the seismic field in the reverse time. In this chapter, we develop an algorithm
of migration based on the elastic field equations, which describes more accurately
the seismic field propagation than the simple acoustic wave equation. Our method
uses the Kirchhoff and Rayleigh integral formulas for elastic wavefields. Consider-
ing that the elastic model approximates the propagation of the seismic fields in the
geological media better than the acoustic model, the developed approach can signif-
icantly improve the quality of interpretation of seismic data in complex geological
formations.
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9.1 Introduction

Migration transformation is widely used in seismic exploration for imaging geologi-
cal cross sections. One of the methods of obtaining the migration field is based on the
Rayleigh integral formula, which appears from the Kirchhoff integral formula in a
case of the plane observation surface. One can find a detailed review of the migration
process in Chap. 8.

For example, in a case of acoustic wavefield equation, the classical Kirchhoff
formula can be used to obtain the reverse-time migration algorithm [1]. One can find
several methods of seismic migration using Kirchhoff formulas for the acoustic field
in [2], where a case of the zero offset between the receivers and transmitters was
considered. The migration algorithms for different offsets between the sources and
receivers are discussed in a number of publications [3–6]. In [7], a case of migration
in anisotropic medium is discussed. Papers [8–10] consider the case of the vector
field migration instead of a scalar field. The integral formulas for scattering of elastic
waves are discussed in [11–13].

Monograph [1] introduces the Kirchhoff formulas in the case of a general elastic
field equation. The integral Kirchhoff formula requires knowing both the elastic
field and its normal derivative on the surface of integration, S. However, it can be
demonstrated that the boundary values of the wavefield and its normal derivative on
the surface S are not independent [12]. In fact, they are related by the corresponding
integral equation. Using this relationship, in a case of the plane observation surface
S, one can transform the integral Kirchhoff formula into the Rayleigh formula, which
operates with the components of the field themselves.

A comparison of the solutions of the wavefield equations obtained using this
Rayleigh formula and using the grid-characteristic method [14–19] can be found in
Sect. 9.6. Note that, the Rayleigh formula can be used for obtaining the migration
field as well [1].

Section 9.2 presents the fundamental elastic field equations. The analytical expres-
sions for Rayleigh formula are developed in Sect. 9.4. The discretization of these
expressions is discussed in Sect. 9.5. Then the analytical algorithm is developed in
Sect. 9.7 by substituting in these analytical expressions the Adjoint Green tensor
discussed in Sect. 9.3 and by conducting the corresponding analytical calculations.
The main stages of these calculations are discussed in Sect. 9.8. The results of migra-
tion imaging using the developed algorithm are presented in Sect. 9.9. Section 9.10
provides a conclusion to the Chapter.

9.2 Equations of the Elastic Wavefields

The system of equations describing the elastic wave propagation can be written as
follows [1, 12]:

https://doi.org/10.1007/978-3-319-76201-2_8
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L
⇀

U − ∂2
⇀

U

∂t2
� 0, (9.1)

where
⇀

U is the displacement vector; L is the Lamé’s differential operator:

L � c2p∇∇ · −c2s∇ × ∇× (9.2)

and cp, cs are the velocities of the compressional and shear waves (P-waves and
S-waves), respectively. These velocities are related to the Lamé’s coefficients (λ and
μ) by the following formulae:

cp �
√

λ + 2μ

ρ
(9.3)

cs �
√

μ

ρ
(9.4)

where ρ is the density of the media.

There is a one-to-one relationship between the displacement vector
⇀

U , the velocity
vector

⇀

v, and the stress tensor σ, which can be expressed as shown in Eqs. 9.5–9.11.
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(
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∂y
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(
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∂U3

∂x

)
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σ23 � μ

(
∂U2

∂z
+

∂U3

∂y

)
(9.10)

⇀

v � ∂
⇀

U

∂t
(9.11)

9.3 Green’s Tensors

The Green’s tensor for the elastic field equation (Eq. 9.1) describes the propagation
of elastic waves generated by a point pulse force. It plays a very important role both
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in the solution of the elastic wave equations and in the development of the migration
methods.

This Green’s tensor can be written in the following form:

GL
(

⇀

r , t
∣∣∣⇀r ′, t ′

)
� GL(p)

(
⇀

r , t
∣∣∣⇀r ′, t ′

)
+GL(s)

(
⇀

r , t
∣∣∣⇀r ′, t ′

)
�
⎡
⎢⎣
g11 g12 g13
g21 g22 g23
g31 g32 g33

⎤
⎥⎦ ,

(9.12)

where we use the following notations:

g11 � −∂2gp
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(9.13)
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(9.18)

In the above formulae, symbols gp and gs denote the following functions. In a
case of diverging waves, gp and gs are given by the following formulae:
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In a case of converging waves, gp and gs are given by the following expressions:
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In a case of diverging waves and in a case of adjoint Green’s tensor, gp and gs
can be written as follows:
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Finally, in a case of converging waves and for an adjoint Green’s tensor, functions
gp and gs have the following form:
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9.4 Rayleigh Integral Formula

The analytical expressions for Rayleigh formula for elastic waves can be obtained
based on the corresponding Kirchhoff integral formula, which provides a solution
for a boundary value problem for the elastic field equations [1, 12]:

−
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(9.27)

The Kirchhoff integral formula, Eq. 9.27, shows that the elastic displacement
field can be reconstructed everywhere inside the domain D from the known values
of these fields and their normal derivatives at the domain boundary dD. It can be
demonstrated that the boundary values of the wavefield and its normal derivative on
the boundary are not independent, but in fact satisfy some integral equations derived
from the Kirchhoff integral formula, Eq. 9.27 [12, 13]. The solution of these integral
equations proves to be a difficult problem in the case of an arbitrary surface dD.
However, if the surface dD is a horizontal plane, these integral formulae can be
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simplified, which results in the so-called Rayleigh integral formula [1, 12, 13]. We
present a short summary of the derivation of the Rayleigh integral formula below.

Let us assume in Eq. 9.27 that dD is the plane surface, z � 0. Under this assump-
tion, after long but straightforward algebra, we can obtain the following analytical
expressions for the scalar components of the displacement field:
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In Eqs. 9.28–9.30, Iip denotes the following integrals given by Eqs. 9.31 and 9.32.
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Substituting the expressions for the Green’s tensor introduced in Sect. 9.3 into
Eqs. 9.31 and 9.32, one can find the following expressions for the above integrals:

Iip �
∫∫
S

1∣∣∣⇀r − ⇀

r ′
∣∣∣

∞∫
0

⎛
⎝Ui

(
⇀

r , t + t ′
)

−Ui

⎛
⎝⇀

r , t + t ′ −
∣∣∣⇀r − ⇀

r ′
∣∣∣

cp

⎞
⎠
⎞
⎠ tdtds

(9.33)

Iis �
∫∫
S

1∣∣∣⇀r − ⇀

r ′
∣∣∣

∞∫
0

⎛
⎝Ui

(
⇀

r , t + t ′
)

−Ui

⎛
⎝⇀

r , t + t ′ −
∣∣∣⇀r − ⇀

r ′
∣∣∣

cs

⎞
⎠
⎞
⎠ tdtds

(9.34)

The following notations will also be used to develop the numerical method based
on Rayleigh integrals:
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Ip � 1

bk

∫∫
S

1∣∣∣⇀r − ⇀
r ′
∣∣∣

∞∫
0

⎛
⎝Uk

(
x, y, 0, t + t ′

)−Uk

⎛
⎝x, y, 0, t + t ′ −

∣∣∣⇀r − ⇀
r ′
∣∣∣

cp

⎞
⎠
⎞
⎠ tdtds

(9.35)

Is � 1

bk

∫∫
S

1∣∣∣⇀r − ⇀
r ′
∣∣∣

∞∫
0

⎛
⎝Uk

(
x, y, 0, t + t ′

)−Uk

⎛
⎝x, y, 0, t + t ′ −

∣∣∣⇀r − ⇀
r ′
∣∣∣

cs

⎞
⎠
⎞
⎠ tdtds

(9.36)

Ips � Ip − Is (9.37)

Note that in a case of using the Ricker wavelet for the source

f (t) �
(
1 − 180

α2

(
t − α

2

)2)
exp

(
−90

α2

(
t − α

2

)2)
(9.38)

integral
∫∞
0 f

(
t + t ′

)
tdt can be solved analytically as shown below:

∞∫
0

f
(
t + t ′

)
tdt � − α2

180
exp

(
−90

α2

(
b − α

2

)2)
. (9.39)

Thus, we arrive at the following equation:

∞∫
0

⎛
⎝ f

(
t + t ′

)− f

⎛
⎝t + t ′ −

∣∣∣⇀r − ⇀

r ′
∣∣∣

cs

⎞
⎠
⎞
⎠ tdt

� α2

180
exp

⎛
⎜⎝−90

α2

⎛
⎝t ′ −

∣∣∣⇀r − ⇀

r ′
∣∣∣

cs
− α

2

⎞
⎠

2⎞⎟⎠− α2

180
exp

(
−90

α2

(
t ′ − α

2

)2)
.

(9.40)

Note that in a special case of the plane wave, one can use the following equations
to calculate the integrals, introduced above:

Ip �
X∫

0

Y∫
0

1

r

(
α2

180
exp

(
− 90

α2

(
t ′ − r

cp
− α

2

)2
)

− α2

180
exp

(
− 90

α2

(
t ′ − α

2

)2))
dxdy

(9.41)

Is �
X∫

0

Y∫
0

1

r

(
α2

180
exp

(
− 90

α2

(
t ′ − r

cs
− α

2

)2
)

− α2

180
exp

(
− 90

α2

(
t ′ − α

2

)2))
dxdy

(9.42)

In Eqs. 9.41–9.42, r is given by Eq. 9.43.
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r �
√

(x ′ − x)2 + (y′ − y)2 + (z′)2 (9.43)

9.5 Discretization of the Derivatives

One of the main problems in developing a numerical representation of the formu-
lae discussed in Sect. 9.4 is related to the discretization of the spatial derivatives
appearing in Eqs. 9.28–9.30. One can calculate these derivatives by the following
finite-difference approximations:

(U1)
L
I J K �

(
c2s b1

(
Dxxz

(
Ip
)L
I J K + Dyyz (Is)

L
I J K +Dzzz (Is)

L
I J K

)
+ c2s b2Dxyz

(
Ips
)L
I J K + c2pb3Dxzz

(
Ips
)L
I J K

) 1

2πh3
(9.44)

(U2)
L
I J K � (

c2s b2
(
Dxxz (Is)

L
I J K + Dyyz

(
Ip
)L
I J K +Dzzz (Is)

L
I J K

)
+ c2s b1Dxyz

(
Ips
)L
I J K + c2pb3Dyzz

(
Ips
)L
I J K

) 1

2πh3
(9.45)

(U3)
L
I J K � (

c2pb3
(
Dxxz (Is)

L
I J K + Dyyz (Is)

L
I J K +Dzzz

(
Ip
)L
I J K

)
+ c2s b1Dxzz

(
Ips
)L
I J K + c2s b2Dyzz

(
Ips
)L
I J K

) 1

2πh3
, (9.46)

where we use the following finite-difference operators:

DxxzW
L
I J K � (

WL
I+2,J,K+1 − 2WL

I+1,J,K+1 +WL
I,J,K+1

)
− (

WL
I+2,J,K − 2WL

I+1,J,K +WL
I,J,K

)
(9.47)

DyyzW
L
I J K � (

WL
I,J+2,K+1 − 2WL

I,J+1,K+1 +WL
I,J,K+1

)
− (

WL
I,J+2,K − 2WL

I,J+1,K +WL
I,J,K

)
(9.48)

DzzzW
L
I J K � WL

I,J,K+3 − 3WL
I,J,K+2 + 3WL

I,J,K+1 − WL
I,J,K (9.49)

DxyzW
L
I J K � WL

I+1,J+1,K+1 − WL
I+1,J+1,K − WL

I,J+1,K+1

− WL
I+1,J,K+1 +WL

I+1,J,K +WL
I,J+1,K +WL

I,J,K+1 − WL
I,J,K (9.50)

DxzzW
L
I J K � (

WL
I+1,J,K+2 − 2WL

I+1,J,K+1 +WL
I+1,J,K

)
− (

WL
I,J,K+2 − 2WL

I,J,K+1 +WL
I,J,K

)
(9.51)

DyzzW
L
I J K � (

WL
I,J+1,K+2 − 2WL

I,J+1,K+1 +WL
I,J+1,K

)
− (

WL
I,J,K+2 − 2WL

I,J,K+1 +WL
I,J,K

)
. (9.52)

In Eqs. 9.44–9.46, h denotes the spatial step. In Eqs. 9.47–9.52,W represents one
of the integrals, Ip, Is , Ips . In Eqs. 9.44–9.52, index L corresponds to time t, while
indices I , J , and K correspond to the spatial coordinates, X, Y , and Z , respectively.
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Fig. 9.1 The modelling domain for a case of the plane wave propagation along: a OXZ plane, b
OYZ plane

9.6 Comparison of the Solutions Obtained Using the
Rayleigh Formula and the Grid-Characteristic Method

In this section we consider two simple scenarios of elastic wave propagation. One
scenario represents the plane wave propagation; another scenario is a case of the
wave generated by the Ricker wavelet in the circle.

In a case of the source represented by the Ricker wavelet in the circleC located in
the plane z = 0, with the center (x0, y0) and a radius of 100 m, the following equation
holds:

Uk (x, y, 0, t) �
{
bk f (t), (x, y) ∈ C

0, (x, y) /∈ C
(9.53)

In a case of the plane wave, the given solution at the boundary takes the following
form for x ∈ [0, X ], y ∈ [0,Y ]:

Uk (x, y, 0, t) � bk f (t) (9.54)

In Eqs. 9.53 and 9.54, f (t) denotes the Ricker wavelet.
We assume that the velocity of P-waves equals to 5000 m/s, the velocity of S-

waves equals to 3100 m/s, and the destiny is of 2500 kg/m3 for the elastic medium
under consideration. The grid of 121 × 121 × 121 nodes with the spatial step of
50 m and the time step of 0.01 s was used for obtaining the solution by the grid-
characteristic method using 201 time steps. We also used the grid of 61 × 61 × 31
nodes with the spatial step of 100 m, and the time step of 0.02 s, for obtaining the
solution by Rayleigh formula using 81 time steps. One can see this modelling domain
in Fig. 9.1.

In a case of the plane wave, b1, b2, b3 satisfy Eq. 9.55.

(b1, b2, b3) � (0, 0, 1) (9.55)
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Fig. 9.2 Plane wave model. The plots of the vertical component of the displacement field vector
along theZ-axis for the timemoment of 0.58 s. The black solid line shows the solution obtained using
the Rayleigh formula. The grey solid line presents the solution produced by the grid-characteristic
method

Fig. 9.3 Plane wave model. The plots of the vertical component of the displacement field vector
along theZ-axis for the timemoment of 0.92 s. The black solid line shows the solution obtained using
the Rayleigh formula. The grey solid line presents the solution produced by the grid-characteristic
method

Figures 9.2, 9.3, and 9.4 show the plots of the Z-component of the displacement
field vector along the Z-coordinate in a case of the plane wave. The black solid line
shows the solution obtained using the Rayleigh formula. The grey solid line presents
the solution produced by the grid-characteristic method. These curves were plotted
along the line parallel to the Z-axis and passing through the center of the modelling
domain. Figures 9.2, 9.3, and 9.4 present the curves for the time moments of 0.58,
0.92, and 1.08 s, respectively.

In a case of Ricker wavelet in a circle, the parameters b1, b2, b3 satisfy one of the
following equations:

(b1, b2, b3) � (0, 0, 1) (9.56)

(b1, b2, b3) � (1, 2, 3) (9.57)

In this case, we have used a grid with 401× 401× 201 nodes with the spatial step
of 50 m and the time step of 0.01 s for obtaining the solution by grid-characteristic
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Fig. 9.4 Plane wave model. The plots of the vertical component of the displacement field vector
along theZ-axis for the timemoment of 1.08 s. The black solid line shows the solution obtained using
the Rayleigh formula. The grey solid line presents the solution produced by the grid-characteristic
method

Fig. 9.5 The modelling domain in a case of the Ricker wavelet in the circle (the position of the
source is shown by a bold black dot); the areas colored by grey and dark grey colors show the region
of integration for the case of using grid-characteristic method, the area colored by the grey color
only corresponds to the case of using Rayleigh formula: a OXZ plane, b OYZ plane

method using 263 time steps. The grid of 31× 201× 101 nodes with the spatial step
of 100 m and the time step of 0.02 s was used for obtaining the solution by Rayleigh
formula using 131 time steps (see Fig. 9.5).

Figures 9.6 and 9.7 show the wave patterns of the displacement vector compo-
nents Uy and Uz, respectively, for the case of coefficients given by Eq. 9.56 at time
moment of 2 s Sections of 1.5 km × 8 km × 10 km modelling domain are shown in
these figures. The black lines show the boundaries of the entire modelling domain.
Figures 9.6a and 9.7a present the solutions obtained by Rayleigh formula, while
Figs. 9.6b and 9.7b show the solutions produced by the grid-characteristic method.

Note that due to the use of the Green’s tensor discussed in Appendix A in the
solutions by Rayleigh formula, there is no head wave presents [20]. In the solutions
by the grid-characteristic method one can find this wave in Figs. 9.6b and 9.7b.
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Fig. 9.6 Wave patterns of the Y-component of the displacement field for time moment of 2 s: a
Rayleigh integral method, b grid-characteristic method

9.7 Migration Based on Rayleigh Integral Formula

The process of migration includes two elements: (1) backward extrapolation of the
scattered wavefields (i.e. continuation of the waves in the direction opposite to that
of their actual propagation and in the reverse time) and (2) synthesis of the medium
image as a snapshot (at time t = 0) of the spatial structure of the wavefield produced
by backward extrapolation. These elements form the foundation of the majority of
algorithms of time section migration (e.g. Berkhout [21, 22], Claerbout [23], and
Zhdanov [1]).

In this section, we consider the algorithm of the backward extrapolation of the
scattered elasticwavefields in the reverse timebased on theRayleigh integral formula,
which was introduced in Sect. 9.4 above.

To simplify the analytical expressions and the subsequent development of the
software,weuse the followingnotations in the algorithmof the elastic fieldmigration:
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Fig. 9.7 Wave patterns of the Z-component of the displacement field at time moment of 2 s: a
Rayleigh integral method, b grid-characteristic method

QAn �
(cB
r

)2 r
cA∫
0

Un

(
⇀

r ′, τ
)

τdτ (9.58)

SAn �
(
cB
cA

)2

Un

(
⇀

r ′,
r

cA

)
(9.59)

where index n takes the following values:

n � 1, 2, 3 (9.60)

and index A stands for P or S:

A � P,S (9.61)

If n � 3, index B � P; if n ∈ {1, 2}, index B � S.
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The following notations are also used:

X � x − x ′ (9.62)

Y � y − y′ (9.63)

Z � z (9.64)

Indices a, b take the following values: X, Y , Z .
Thus, the following notations can be used:

RnA
z3 � 3

1

r2
Z

r

{(
3 − 5

(
Z

r

)2
)
QAn +

(
2

(
Z

r

)2

− 1

)
SAn

}
(9.65)

RnA
aab � 1

r2
b

r

{(
3 − 7

(a
r

)2)
QAn +

(
2
(a
r

)2 − 1

)
SAn

}
(9.66)

RnA
xyz � −3

1

r2
X

r

Y

r

Z

r
QAn (9.67)

Finally, one can calculate the following expressions:

J1 (x, y, z) � −R1P
xxz − R1S

yyz − R1S
z3 − R2P

xyz + R2S
xyz − R3P

zzx + R3S
zzx (9.68)

J2 (x, y, z) � −R2P
yyz − R2S

xxz − R2S
z3 − R1P

xyz + R1S
xyz − R3P

zzy + R3S
zzy (9.69)

J3 (x, y, z) � −R3P
z3 − R3S

xxz − R3S
yyz − R1P

zzx + R1S
zzx − R2P

zzy + R2S
zzy (9.70)

Based on Eqs. 9.68–9.70, one can find the result of migration of the elastic wave-
field using the following formulae:

UMIGR
n (x, y, z) � 1

2π

∫∫
S

Jnds (9.71)

The absolute value of the migrated elastic field can be found as follows:

UMIGR (x, y, z) �
√(

UMIGR
1 (x, y, z)

)2
+
(
UMIGR

2 (x, y, z)
)2

+
(
UMIGR

3 (x, y, z)
)2

(9.72)

9.8 Migration Imaging Conditions

In this section, we discuss the second element of the migration process—synthesis
of the medium image based on the elastic field migration (imaging conditions). The
analytical expressions for a snapshot (at time t = 0) of the spatial structure of the
migration field can be found based on the Rayleigh formula as well.
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Let the seismograms be known for a time interval from 0 to T . Then the integrals
for the conjugate field at the point t = 0 are written by Eqs. 9.73–9.78:

I1p �
∫∫
S

1∣∣∣⇀r − ⇀

r ′
∣∣∣

∣∣∣∣⇀r −⇀
r ′
∣∣∣∣

cp∫
0

U1

(
⇀

r , τ
)⎛⎝τ −

∣∣∣⇀r − ⇀

r ′
∣∣∣

cp

⎞
⎠ dτds (9.73)

I2p �
∫∫
S

1∣∣∣⇀r − ⇀

r ′
∣∣∣

∣∣∣∣⇀r −⇀
r ′
∣∣∣∣

cp∫
0

U2

(
⇀

r , τ
)⎛⎝τ −

∣∣∣⇀r − ⇀

r ′
∣∣∣

cp

⎞
⎠ dτds (9.74)

I3p �
∫∫
S

1∣∣∣⇀r − ⇀

r ′
∣∣∣

∣∣∣∣⇀r −⇀
r ′
∣∣∣∣

cp∫
0

U3

(
⇀

r , τ
)⎛⎝τ −

∣∣∣⇀r − ⇀

r ′
∣∣∣

cp

⎞
⎠ dτds (9.75)

I1s �
∫∫
S

1∣∣∣⇀r − ⇀

r ′
∣∣∣

∣∣∣∣⇀r −⇀
r ′
∣∣∣∣

cs∫
0

U1

(
⇀

r , τ
)⎛⎝τ −

∣∣∣⇀r − ⇀

r ′
∣∣∣

cs

⎞
⎠ dτds (9.76)

I2s �
∫∫
S

1∣∣∣⇀r − ⇀

r ′
∣∣∣

∣∣∣∣∣⇀r −⇀
r

′ ∣∣∣∣∣
cs∫

0

U2

(
⇀

r , τ
)⎛⎝τ −

∣∣∣⇀r − ⇀

r ′
∣∣∣

cs

⎞
⎠ dτds (9.77)

I3s �
∫∫
S

1∣∣∣⇀r − ⇀

r ′
∣∣∣

∣∣∣∣⇀r −⇀
r ′
∣∣∣∣

cs∫
0

U3

(
⇀

r , τ
)⎛⎝τ −

∣∣∣⇀r − ⇀

r ′
∣∣∣

cs

⎞
⎠ dtds (9.78)

Equations 9.73–9.78 should be differentiated in accordance to Eqs. 9.28–9.30.
Note that Eqs. 9.79–9.80 are true:

I �
g(a)∫
0

f (a, τ ) dτ (9.79)

∂ I

∂a
� f (a, g (a))

∂g (a)

∂a
+

g(a)∫
0

∂ f (a, τ )

∂a
dτ . (9.80)

We will also use the following notation:
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�nA � (cB)2

r

r
cA∫
0

Un

(
⇀

r ′, τ
)(

τ − r

cA

)
dτ (9.81)

In Eq. 9.81, n � 1, 2, 3, A = P, S, B � P for n � 3, B � S for n ∈ {1, 2} in
accordance to notations used in Sect. 9.7. Integral �nA should be differentiated by
r. Thus, one can obtain Eqs. 9.82–9.84 using Eq. 9.80:

∂�nA

∂r
� −

(cB
r

)2 r
cA∫
0

Un

(
⇀

r ′, τ
)

τdτ (9.82)

∂2�nA

∂r2
� 2

r2
�nA +

2

cA

(cB)2

r2

r
cA∫
0

Un

(
⇀

r ′, τ
)
dτ − 1

r

(
cB
cA

)2

Un

(
⇀

r ′,
r

cA

)
(9.83)

∂3�nA

∂r3
� −3

r

∂2�nA

∂r2
. (9.84)

One can calculate the following Eqs. 9.85–9.90:

∂3�nA

∂z3
� 3

z

r

{( z
r

)2 1

r2
∂�nA

∂r
− 1

r2
∂�nA

∂r
+
1

r

∂2�nA

∂r2
− 2

( z
r

)2 1
r

∂2�nA

∂r2

}
(9.85)

∂3�nA

∂x2∂z
� Z

r

{
3

(
X

r

)2 1

r2
∂�nA

∂r
− 1

r2
∂�nA

∂r
+
1

r

∂2�nA

∂r2
− 2

(
X

r

)2 1

r

∂2�nA

∂r2

}

(9.86)

∂3�nA

∂y2∂z
� Z

r

{
3

(
Y

r

)2 1

r2
∂�nA

∂r
− 1

r2
∂�nA

∂r
+
1

r

∂2�nA

∂r2
− 2

(
Y
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)2 1

r

∂2�nA

∂r2

}

(9.87)

∂3�nA

∂x∂z2
� X

r

{
3

(
Z

r

)2 1

r2
∂�nA

∂r
− 1

r2
∂�nA

∂r
+
1

r

∂2�nA

∂r2
− 2

(
Z

r

)2 1

r

∂2�nA

∂r2

}

(9.88)

∂3�nA

∂y∂z2
� Y

r

{
3

(
Z

r

)2 1

r2
∂�nA

∂r
− 1

r2
∂�nA

∂r
+
1

r

∂2�nA

∂r2
− 2

(
Z

r

)2 1

r

∂2�nA

∂r2

}

(9.89)

∂3�nA

∂x∂y∂z
� 3

X

r

Y

r

Z

r

1

r2
∂�nA

∂r
. (9.90)
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In Eqs. 9.85–9.90, X, Y , Z are given by Eqs. 9.62–9.64. Thus, one can substitute
Eqs. 9.82–9.84 into Eqs. 9.85–9.90 and obtain the analytical algorithm discussed in
Sect. 9.7.

9.9 Examples of Migration Imaging

In this Section, we present examples of migration imaging based on the Rayleigh
integral formulas discussed in Sects. 9.7–9.8.We use zero-offset seismograms calcu-
lated by Born approximation introduced in Chap. 8. The modelling domain (region
of integration) was selected with the size of 10 km × 2 m × 2.5 km. We have con-
sidered several models shown in the top panels of Figs. 9.6a, 9.7a, 9.8a, and 9.9a.
The background velocities of P- and S-waves are equal to 2500 and 1250 m/s respec-
tively. Note that, the velocities used in the migration formulas Eqs. 9.71–9.72 should
be twice smaller than the real ones. The inclusions shown by white color in these
figures have the squared velocities exceeded those of the background values by 1%.
The density equals to 2500 kg/m3. The sources and receivers are located 15 m under
the earth surface every 10 m horizontally. The Ricker wavelet with the frequency of
25 Hz and the polarization (0, 0, 1) was used. The receivers recorded the data every
2 ms during 4 s time interval.

Four differentmodelswere considered shown in Figs. 9.8a, 9.9a, 9.10 a, and 9.11a,
respectively. Figures 9.8b, 9.9b, 9.10b, and 9.11b present the results of the migration
of the three-component data Ux , Uy , and Uz based on Rayleigh integral formula.
Figures 9.8c, 9.9c, 9.10c, 9.11c show the results of migrations of one-component
data Uz based on Rayleigh integral formula.

Note that instead of one true boundary in the migration field, one can see five
boundaries. However, the positions of these false boundaries are theoretically pre-
dictable. To predict these false boundaries, let us consider the reflector located at a
depth h.

The velocities of P- and S-waves are related by the following equation:

cp � 2cs (9.91)

There are four types of waves scattered from the reflector.

1. PP-waves, observed at the following time moment:

tP P � h

cp
+

h

cp
� 2h

cp
� h

cs
(9.92)

2. PS-waves, observed at the following time moment:

tPS � h

cp
+

h

cs
� h

cp
+
2h

cp
� 3h

cp
� 3

2

h

cs
(9.93)

https://doi.org/10.1007/978-3-319-76201-2_8
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Fig. 9.8 The first model and the results of the migration based on the Rayleigh integral formula:
a the model, b migration image based on three-component seismograms, c migration image based
on one-component seismogram

3. SP-waves, observed at the following time moment:

tSP � h

cs
+

h

cp
� 2h

cp
+

h

cp
� 3h

cp
� 3

2

h

cs
(9.94)

4. SS-waves observed at the following time moment:

tSS � h

cs
+

h

cs
� 2

h

cs
(9.95)

The migration algorithm restores the boundaries based on P- and S-waves. Thus,
there are 8 types of restored boundaries:

1. Boundary with the depth restored based on PP waves using P-waves. The depth
is given by the following formula:
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Fig. 9.9 The second model and the migration based on the Rayleigh integral formula: a the model,
b migration image based on three-component seismograms, c migration image based on one-
component seismogram

hP
PP � cp

2
tP P � cp

2

h

cs
� h (9.96)

2. Boundary with the depth restored based on PP waves using S-waves. The depth
is given by the following formula:

hS
PP � cs

2
tP P � cs

2

h

cs
� h

2
� 0.5h (9.97)

3. Boundary with the depth restored based on PS waves using P-waves. The depth
is given by the following formula:

hP
PS � cp

2
tPS � cp

2

3

2

h

cs
� 3

2
h � 1.5h (9.98)
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Fig. 9.10 The third model and the migration based on the Rayleigh integral formula: a the model,
b migration image based on three-component seismograms, c migration image based on one-
component seismogram

4. Boundary with the depth restored based on PS waves using S-waves. The depth
is given by the following formula:

hS
PS � cs

2
tPS � cs

2

3

2

h

cs
� 3

4
h � 0.75h (9.99)

5. Boundary with the depth restored based on SP waves using P-waves. The depth
is given by the following formula:

hP
SP � cp

2
tSP � cp

2

3

2

h

cs
� 3

2
h � 1.5h (9.100)

6. Boundary with the depth restored based on SP waves using S-waves. The depth
is given by the following formula:
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Fig. 9.11 The forth model and the migration based on the Rayleigh integral formula: a the model,
b migration image based on three-component seismograms, c migration image based on one-
component seismogram

hS
SP � cs

2
tSP � cs

2

3

2

h

cs
� 3

4
h � 0.75h (9.101)

7. Boundary with the depth restored based on SS waves using P-waves. The depth
is given by the following formula:

hP
SS � cp

2
tSS � cp

2

2h

cs
� 2h (9.102)

8. Boundary with the depth restored based on SS waves using S-waves. The depth
is given by the following formula:
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Fig. 9.12 The central
decline of the amplitude of
S-wave

hS
SS � cs

2
tSS � cs

2

2h

cs
� h (9.103)

Thus, there are five different values of the boundary depth.

1. True boundary with the depth is given by the following formula:

h � hP
PP � hS

SS (9.104)

2. False boundary with the depth is given by Eq. 9.105.

0.5h � hS
PP (9.105)

3. False boundary with the depth is given by Eq. 9.106.

0.75h � hS
PS � hS

SP (9.106)

4. False boundary with the depth is given by Eq. 9.107.

1.5h � hP
PS � hP

SP (9.107)

5. False boundary with the depth is given by Eq. 9.108.

2h � hP
SS (9.108)

The impact of S-waves in the zero-offset seismograms is known to be diminished
due to the central decline of the amplitude of S-wave as shown in Fig. 9.12.

In summary, we have demonstrated that there could be three types of the boundary
brightness in the migration image:
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1. Two bright boundaries due to the strong impact of PP-wave.

1.1 True boundary with the depth given by Eq. 9.104 mostly due to PP-waves.
1.2 False boundary with the depth given by Eq. 9.105.

2. Two boundaries with the middle brightness. PS-waves are S-waves with the
central decline but formed as a reflection of P-waves without the central decline.
SP-waves are P-waves without the central decline but formed as a reflection of
S-waves with the central decline. Otherwise, SS-waves are S-waves with central
decline formed as a reflection of S-waves with the central decline as well.

2.1 False boundary with the depth given by Eq. 9.106.
2.2 False boundary with the depth given by Eq. 9.107.

3. There is one boundary with a low brightness—a false boundary with the depth
given by Eq. 9.108.

Practically, there is the following structure of the boundaries brightness, as one
can see in Fig. 9.6b.

1. There are two bright boundaries.

1.1. True boundary with the depth is given by Eq. 9.104.
1.2. False boundary with the depth is given by Eq. 9.105.

2. There is one boundary with the middle brightness. False boundary with the depth
is given by Eq. 9.106.

3. There are two boundaries with a low brightness.

3.1. False boundary with the depth is given by Eq. 9.107.
3.2. False boundary with the depth is given by Eq. 9.108.

Some observed differences between the theoretical and practical structures of the
boundary brightness are caused by diminishing the brightness of the lower bound-
aries.

9.10 Conclusions

In this Chapter, we have developed the analytical expressions of Rayleigh integral
formula for the elastic wavefield. We have also studied the method of modelling the
elastic wave propagation based on the Rayleigh formula. A comparison between the
solutions obtained by thismethod and by grid-characteristicmethodwas done, which
demonstrated a good qualitative and quantitative agreement between the results pro-
duced by both methods.

The corresponding analytical algorithm for migration of the elastic wavefield
based on the Rayleigh integral formula was developed as well. This approach to the
elastic field migration was numerically tested on several zero-offset seismograms
computed using the Born approximation. We have demonstrated that there are one
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true and four types of false boundaries in the resulting migration images with the
theoretically predicted locations. Future work will be aimed at developing the meth-
ods of eliminating these false boundaries. Note that the developed method can be
used for migration of both one-component and three-component seismic data.
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